| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4i | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4.1 | ⊢ 𝐴 ∈ 𝐵 |
| 3eltr4.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 3eltr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | eleqtrri 2283 | . 2 ⊢ 𝐴 ∈ 𝐷 |
| 5 | 1, 4 | eqeltri 2280 | 1 ⊢ 𝐶 ∈ 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: 1nq 7514 0r 7898 1sr 7899 m1r 7900 |
| Copyright terms: Public domain | W3C validator |