![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eltr4i | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4.2 | ⊢ 𝐶 = 𝐴 |
3eltr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2269 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 1nq 7426 0r 7810 1sr 7811 m1r 7812 |
Copyright terms: Public domain | W3C validator |