Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eltr4i | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4.2 | ⊢ 𝐶 = 𝐴 |
3eltr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2233 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2230 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 |
This theorem is referenced by: 1nq 7269 0r 7653 1sr 7654 m1r 7655 |
Copyright terms: Public domain | W3C validator |