ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4i GIF version

Theorem 3eltr4i 2311
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4.1 𝐴𝐵
3eltr4.2 𝐶 = 𝐴
3eltr4.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4.2 . 2 𝐶 = 𝐴
2 3eltr4.1 . . 3 𝐴𝐵
3 3eltr4.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2305 . 2 𝐴𝐷
51, 4eqeltri 2302 1 𝐶𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  1nq  7549  0r  7933  1sr  7934  m1r  7935
  Copyright terms: Public domain W3C validator