![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2199 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2272 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 3eltr4d 2277 rspc2vd 3150 exmidsssnc 4233 tfrexlem 6389 nnsucuniel 6550 erref 6609 en1uniel 6860 fin0 6943 fin0or 6944 prarloclemarch2 7481 fzopth 10130 fzoss2 10242 fzosubel3 10266 elfzomin 10276 elfzonlteqm1 10280 fzoend 10292 fzofzp1 10297 fzofzp1b 10298 peano2fzor 10302 zmodfzo 10421 frecuzrdg0 10487 frecuzrdgsuc 10488 frecuzrdgdomlem 10491 frecuzrdg0t 10496 frecuzrdgsuctlem 10497 seq3f1olemqsum 10587 seqf1oglem2 10594 bcn2 10838 summodclem2a 11527 fisumss 11538 fsumm1 11562 fisumcom2 11584 prodmodclem2a 11722 fprodm1 11744 fprodcom2fi 11772 ennnfonelemex 12574 ctinfomlemom 12587 gsumpropd2 12979 sgrppropd 12999 mndpropd 13024 grpsubpropd2 13180 imasgrp 13184 subg0 13253 issubg2m 13262 ghmrn 13330 0ghm 13331 resghm2 13334 ghmco 13337 rngpropd 13454 imasrng 13455 srgpcomp 13489 srgpcompp 13490 srgpcomppsc 13491 ringpropd 13537 imasring 13563 qusring2 13565 mulgass3 13584 rhmopp 13675 lringuplu 13695 aprcotr 13784 lmodprop2d 13847 islssmd 13858 2idl0 14011 2idl1 14012 qus2idrng 14024 qus1 14025 qusrhm 14027 znf1o 14150 psrbaglesuppg 14169 lmtopcnp 14429 txopn 14444 blpnfctr 14618 metcnpi 14694 metcnpi2 14695 cncfmpt2fcntop 14778 limcimolemlt 14843 cnplimclemr 14848 limccnp2lem 14855 limccnp2cntop 14856 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvcnp2cntop 14878 dvcn 14879 dvaddxxbr 14880 dvmulxxbr 14881 dvef 14906 lgseisenlem3 15229 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |