| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrd 2275 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr4d 2280 rspc2vd 3153 exmidsssnc 4237 tfrexlem 6401 nnsucuniel 6562 erref 6621 en1uniel 6872 fin0 6955 fin0or 6956 prarloclemarch2 7503 fzopth 10153 fzoss2 10265 fzosubel3 10289 elfzomin 10299 elfzonlteqm1 10303 fzoend 10315 fzofzp1 10320 fzofzp1b 10321 peano2fzor 10325 zmodfzo 10456 frecuzrdg0 10522 frecuzrdgsuc 10523 frecuzrdgdomlem 10526 frecuzrdg0t 10531 frecuzrdgsuctlem 10532 seq3f1olemqsum 10622 seqf1oglem2 10629 bcn2 10873 summodclem2a 11563 fisumss 11574 fsumm1 11598 fisumcom2 11620 prodmodclem2a 11758 fprodm1 11780 fprodcom2fi 11808 ennnfonelemex 12656 ctinfomlemom 12669 strslfv3 12749 gsumpropd2 13095 sgrppropd 13115 mndpropd 13142 imasmnd 13155 grpsubpropd2 13307 imasgrp 13317 subg0 13386 issubg2m 13395 ghmrn 13463 0ghm 13464 resghm2 13467 ghmco 13470 rngpropd 13587 imasrng 13588 srgpcomp 13622 srgpcompp 13623 srgpcomppsc 13624 ringpropd 13670 imasring 13696 qusring2 13698 mulgass3 13717 rhmopp 13808 lringuplu 13828 aprcotr 13917 lmodprop2d 13980 islssmd 13991 2idl0 14144 2idl1 14145 qus2idrng 14157 qus1 14158 qusrhm 14160 znf1o 14283 psrbaglesuppg 14302 psr0cl 14309 psrnegcl 14311 psr1clfi 14316 lmtopcnp 14570 txopn 14585 blpnfctr 14759 metcnpi 14835 metcnpi2 14836 cncfmpt2fcntop 14919 limcimolemlt 14984 cnplimclemr 14989 limccnp2lem 14996 limccnp2cntop 14997 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvcnp2cntop 15019 dvcn 15020 dvaddxxbr 15021 dvmulxxbr 15022 dvef 15047 lgseisenlem3 15397 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |