![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2105 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2178 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-clel 2096 |
This theorem is referenced by: 3eltr4d 2183 exmidsssnc 4064 tfrexlem 6161 nnsucuniel 6321 erref 6379 en1uniel 6628 fin0 6708 fin0or 6709 prarloclemarch2 7128 fzopth 9682 fzoss2 9790 fzosubel3 9814 elfzomin 9824 elfzonlteqm1 9828 fzoend 9840 fzofzp1 9845 fzofzp1b 9846 peano2fzor 9850 zmodfzo 9961 frecuzrdg0 10027 frecuzrdgsuc 10028 frecuzrdgdomlem 10031 frecuzrdg0t 10036 frecuzrdgsuctlem 10037 seq3f1olemqsum 10114 bcn2 10351 summodclem2a 10989 fisumss 11000 fsumm1 11024 fisumcom2 11046 ennnfonelemex 11719 ctinfomlemom 11732 lmtopcnp 12200 txopn 12215 blpnfctr 12367 metcnpi 12439 metcnpi2 12440 limcimolemlt 12513 dvidlemap 12533 |
Copyright terms: Public domain | W3C validator |