| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrd 2275 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr4d 2280 rspc2vd 3153 exmidsssnc 4237 tfrexlem 6394 nnsucuniel 6555 erref 6614 en1uniel 6865 fin0 6948 fin0or 6949 prarloclemarch2 7489 fzopth 10139 fzoss2 10251 fzosubel3 10275 elfzomin 10285 elfzonlteqm1 10289 fzoend 10301 fzofzp1 10306 fzofzp1b 10307 peano2fzor 10311 zmodfzo 10442 frecuzrdg0 10508 frecuzrdgsuc 10509 frecuzrdgdomlem 10512 frecuzrdg0t 10517 frecuzrdgsuctlem 10518 seq3f1olemqsum 10608 seqf1oglem2 10615 bcn2 10859 summodclem2a 11549 fisumss 11560 fsumm1 11584 fisumcom2 11606 prodmodclem2a 11744 fprodm1 11766 fprodcom2fi 11794 ennnfonelemex 12642 ctinfomlemom 12655 strslfv3 12735 gsumpropd2 13062 sgrppropd 13082 mndpropd 13107 grpsubpropd2 13263 imasgrp 13267 subg0 13336 issubg2m 13345 ghmrn 13413 0ghm 13414 resghm2 13417 ghmco 13420 rngpropd 13537 imasrng 13538 srgpcomp 13572 srgpcompp 13573 srgpcomppsc 13574 ringpropd 13620 imasring 13646 qusring2 13648 mulgass3 13667 rhmopp 13758 lringuplu 13778 aprcotr 13867 lmodprop2d 13930 islssmd 13941 2idl0 14094 2idl1 14095 qus2idrng 14107 qus1 14108 qusrhm 14110 znf1o 14233 psrbaglesuppg 14252 lmtopcnp 14512 txopn 14527 blpnfctr 14701 metcnpi 14777 metcnpi2 14778 cncfmpt2fcntop 14861 limcimolemlt 14926 cnplimclemr 14931 limccnp2lem 14938 limccnp2cntop 14939 dvidlemap 14953 dvidrelem 14954 dvidsslem 14955 dvcnp2cntop 14961 dvcn 14962 dvaddxxbr 14963 dvmulxxbr 14964 dvef 14989 lgseisenlem3 15339 lgseisenlem4 15340 |
| Copyright terms: Public domain | W3C validator |