Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2170 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2243 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-cleq 2157 df-clel 2160 |
This theorem is referenced by: 3eltr4d 2248 exmidsssnc 4177 tfrexlem 6294 nnsucuniel 6455 erref 6513 en1uniel 6762 fin0 6843 fin0or 6844 prarloclemarch2 7352 fzopth 9987 fzoss2 10098 fzosubel3 10122 elfzomin 10132 elfzonlteqm1 10136 fzoend 10148 fzofzp1 10153 fzofzp1b 10154 peano2fzor 10158 zmodfzo 10273 frecuzrdg0 10339 frecuzrdgsuc 10340 frecuzrdgdomlem 10343 frecuzrdg0t 10348 frecuzrdgsuctlem 10349 seq3f1olemqsum 10426 bcn2 10667 summodclem2a 11309 fisumss 11320 fsumm1 11344 fisumcom2 11366 prodmodclem2a 11504 fprodm1 11526 fprodcom2fi 11554 ennnfonelemex 12301 ctinfomlemom 12314 lmtopcnp 12808 txopn 12823 blpnfctr 12997 metcnpi 13073 metcnpi2 13074 cncfmpt2fcntop 13143 limcimolemlt 13191 cnplimclemr 13196 limccnp2lem 13203 limccnp2cntop 13204 dvidlemap 13218 dvcnp2cntop 13221 dvcn 13222 dvaddxxbr 13223 dvmulxxbr 13224 dvef 13246 |
Copyright terms: Public domain | W3C validator |