![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2199 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2272 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 3eltr4d 2277 rspc2vd 3149 exmidsssnc 4232 tfrexlem 6387 nnsucuniel 6548 erref 6607 en1uniel 6858 fin0 6941 fin0or 6942 prarloclemarch2 7479 fzopth 10127 fzoss2 10239 fzosubel3 10263 elfzomin 10273 elfzonlteqm1 10277 fzoend 10289 fzofzp1 10294 fzofzp1b 10295 peano2fzor 10299 zmodfzo 10418 frecuzrdg0 10484 frecuzrdgsuc 10485 frecuzrdgdomlem 10488 frecuzrdg0t 10493 frecuzrdgsuctlem 10494 seq3f1olemqsum 10584 seqf1oglem2 10591 bcn2 10835 summodclem2a 11524 fisumss 11535 fsumm1 11559 fisumcom2 11581 prodmodclem2a 11719 fprodm1 11741 fprodcom2fi 11769 ennnfonelemex 12571 ctinfomlemom 12584 gsumpropd2 12976 sgrppropd 12996 mndpropd 13021 grpsubpropd2 13177 imasgrp 13181 subg0 13250 issubg2m 13259 ghmrn 13327 0ghm 13328 resghm2 13331 ghmco 13334 rngpropd 13451 imasrng 13452 srgpcomp 13486 srgpcompp 13487 srgpcomppsc 13488 ringpropd 13534 imasring 13560 qusring2 13562 mulgass3 13581 rhmopp 13672 lringuplu 13692 aprcotr 13781 lmodprop2d 13844 islssmd 13855 2idl0 14008 2idl1 14009 qus2idrng 14021 qus1 14022 qusrhm 14024 znf1o 14139 psrbaglesuppg 14158 lmtopcnp 14418 txopn 14433 blpnfctr 14607 metcnpi 14683 metcnpi2 14684 cncfmpt2fcntop 14753 limcimolemlt 14818 cnplimclemr 14823 limccnp2lem 14830 limccnp2cntop 14831 dvidlemap 14845 dvcnp2cntop 14848 dvcn 14849 dvaddxxbr 14850 dvmulxxbr 14851 dvef 14873 lgseisenlem3 15188 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |