Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2171 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2245 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 3eltr4d 2250 exmidsssnc 4182 tfrexlem 6302 nnsucuniel 6463 erref 6521 en1uniel 6770 fin0 6851 fin0or 6852 prarloclemarch2 7360 fzopth 9996 fzoss2 10107 fzosubel3 10131 elfzomin 10141 elfzonlteqm1 10145 fzoend 10157 fzofzp1 10162 fzofzp1b 10163 peano2fzor 10167 zmodfzo 10282 frecuzrdg0 10348 frecuzrdgsuc 10349 frecuzrdgdomlem 10352 frecuzrdg0t 10357 frecuzrdgsuctlem 10358 seq3f1olemqsum 10435 bcn2 10677 summodclem2a 11322 fisumss 11333 fsumm1 11357 fisumcom2 11379 prodmodclem2a 11517 fprodm1 11539 fprodcom2fi 11567 ennnfonelemex 12347 ctinfomlemom 12360 lmtopcnp 12890 txopn 12905 blpnfctr 13079 metcnpi 13155 metcnpi2 13156 cncfmpt2fcntop 13225 limcimolemlt 13273 cnplimclemr 13278 limccnp2lem 13285 limccnp2cntop 13286 dvidlemap 13300 dvcnp2cntop 13303 dvcn 13304 dvaddxxbr 13305 dvmulxxbr 13306 dvef 13328 |
Copyright terms: Public domain | W3C validator |