| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | eleqtrd 2275 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr4d 2280 rspc2vd 3153 exmidsssnc 4236 tfrexlem 6392 nnsucuniel 6553 erref 6612 en1uniel 6863 fin0 6946 fin0or 6947 prarloclemarch2 7486 fzopth 10136 fzoss2 10248 fzosubel3 10272 elfzomin 10282 elfzonlteqm1 10286 fzoend 10298 fzofzp1 10303 fzofzp1b 10304 peano2fzor 10308 zmodfzo 10439 frecuzrdg0 10505 frecuzrdgsuc 10506 frecuzrdgdomlem 10509 frecuzrdg0t 10514 frecuzrdgsuctlem 10515 seq3f1olemqsum 10605 seqf1oglem2 10612 bcn2 10856 summodclem2a 11546 fisumss 11557 fsumm1 11581 fisumcom2 11603 prodmodclem2a 11741 fprodm1 11763 fprodcom2fi 11791 ennnfonelemex 12631 ctinfomlemom 12644 gsumpropd2 13036 sgrppropd 13056 mndpropd 13081 grpsubpropd2 13237 imasgrp 13241 subg0 13310 issubg2m 13319 ghmrn 13387 0ghm 13388 resghm2 13391 ghmco 13394 rngpropd 13511 imasrng 13512 srgpcomp 13546 srgpcompp 13547 srgpcomppsc 13548 ringpropd 13594 imasring 13620 qusring2 13622 mulgass3 13641 rhmopp 13732 lringuplu 13752 aprcotr 13841 lmodprop2d 13904 islssmd 13915 2idl0 14068 2idl1 14069 qus2idrng 14081 qus1 14082 qusrhm 14084 znf1o 14207 psrbaglesuppg 14226 lmtopcnp 14486 txopn 14501 blpnfctr 14675 metcnpi 14751 metcnpi2 14752 cncfmpt2fcntop 14835 limcimolemlt 14900 cnplimclemr 14905 limccnp2lem 14912 limccnp2cntop 14913 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvcnp2cntop 14935 dvcn 14936 dvaddxxbr 14937 dvmulxxbr 14938 dvef 14963 lgseisenlem3 15313 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |