| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleqtrri 2272 3eltr3i 2277 prid2 3730 2eluzge0 9666 fz01or 10203 fz0to4untppr 10216 ef0lem 11842 ege2le3 11853 efgt1p2 11877 efgt1p 11878 phi1 12412 cnrehmeocntop 14930 dvcjbr 15028 fmelpw1o 15536 |
| Copyright terms: Public domain | W3C validator |