| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtri | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eleqtr.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eleqtrri 2280 3eltr3i 2285 prid2 3739 2eluzge0 9695 fz01or 10232 fz0to4untppr 10245 ef0lem 11913 ege2le3 11924 efgt1p2 11948 efgt1p 11949 phi1 12483 cnrehmeocntop 15024 dvcjbr 15122 fmelpw1o 15675 |
| Copyright terms: Public domain | W3C validator |