ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtri GIF version

Theorem eleqtri 2281
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtr.1 𝐴𝐵
eleqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
eleqtri 𝐴𝐶

Proof of Theorem eleqtri
StepHypRef Expression
1 eleqtr.1 . 2 𝐴𝐵
2 eleqtr.2 . . 3 𝐵 = 𝐶
32eleq2i 2273 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 145 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-clel 2202
This theorem is referenced by:  eleqtrri  2282  3eltr3i  2287  prid2  3745  fmelpw1o  7378  2eluzge0  9716  fz01or  10253  fz0to4untppr  10266  ef0lem  12046  ege2le3  12057  efgt1p2  12081  efgt1p  12082  phi1  12616  cnrehmeocntop  15157  dvcjbr  15255
  Copyright terms: Public domain W3C validator