Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtr.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 144 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eleqtrri 2246 3eltr3i 2251 prid2 3690 2eluzge0 9534 fz01or 10067 fz0to4untppr 10080 ef0lem 11623 ege2le3 11634 efgt1p2 11658 efgt1p 11659 phi1 12173 cnrehmeocntop 13387 dvcjbr 13466 fmelpw1o 13841 |
Copyright terms: Public domain | W3C validator |