Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtr.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2232 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 144 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eleqtrri 2241 3eltr3i 2246 prid2 3682 2eluzge0 9509 fz01or 10042 fz0to4untppr 10055 ef0lem 11597 ege2le3 11608 efgt1p2 11632 efgt1p 11633 phi1 12147 cnrehmeocntop 13193 dvcjbr 13272 fmelpw1o 13648 |
Copyright terms: Public domain | W3C validator |