ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exbii GIF version

Theorem 3exbii 1595
Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
exbii.1 (𝜑𝜓)
Assertion
Ref Expression
3exbii (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)

Proof of Theorem 3exbii
StepHypRef Expression
1 exbii.1 . . 3 (𝜑𝜓)
21exbii 1593 . 2 (∃𝑧𝜑 ↔ ∃𝑧𝜓)
322exbii 1594 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  eeeanv  1921  ceqsex6v  2770  oprabid  5874  dfoprab2  5889  dftpos3  6230  xpassen  6796
  Copyright terms: Public domain W3C validator