ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exbii Unicode version

Theorem 3exbii 1541
Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
exbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3exbii  |-  ( E. x E. y E. z ph  <->  E. x E. y E. z ps )

Proof of Theorem 3exbii
StepHypRef Expression
1 exbii.1 . . 3  |-  ( ph  <->  ps )
21exbii 1539 . 2  |-  ( E. z ph  <->  E. z ps )
322exbii 1540 1  |-  ( E. x E. y E. z ph  <->  E. x E. y E. z ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   E.wex 1424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443  ax-ial 1470
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  eeeanv  1853  ceqsex6v  2656  oprabid  5619  dfoprab2  5634  dftpos3  5962  xpassen  6479
  Copyright terms: Public domain W3C validator