ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exbii Unicode version

Theorem 3exbii 1631
Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
exbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3exbii  |-  ( E. x E. y E. z ph  <->  E. x E. y E. z ps )

Proof of Theorem 3exbii
StepHypRef Expression
1 exbii.1 . . 3  |-  ( ph  <->  ps )
21exbii 1629 . 2  |-  ( E. z ph  <->  E. z ps )
322exbii 1630 1  |-  ( E. x E. y E. z ph  <->  E. x E. y E. z ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eeeanv  1962  ceqsex6v  2822  oprabid  5999  dfoprab2  6015  dftpos3  6371  xpassen  6950
  Copyright terms: Public domain W3C validator