ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos3 GIF version

Theorem dftpos3 6241
Description: Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4619. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem dftpos3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relcnv 4989 . . . . . . . . . 10 Rel dom 𝐹
2 dmtpos 6235 . . . . . . . . . . 11 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
32releqd 4695 . . . . . . . . . 10 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ↔ Rel dom 𝐹))
41, 3mpbiri 167 . . . . . . . . 9 (Rel dom 𝐹 → Rel dom tpos 𝐹)
5 reltpos 6229 . . . . . . . . 9 Rel tpos 𝐹
64, 5jctil 310 . . . . . . . 8 (Rel dom 𝐹 → (Rel tpos 𝐹 ∧ Rel dom tpos 𝐹))
7 relrelss 5137 . . . . . . . 8 ((Rel tpos 𝐹 ∧ Rel dom tpos 𝐹) ↔ tpos 𝐹 ⊆ ((V × V) × V))
86, 7sylib 121 . . . . . . 7 (Rel dom 𝐹 → tpos 𝐹 ⊆ ((V × V) × V))
98sseld 3146 . . . . . 6 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹𝑤 ∈ ((V × V) × V)))
10 elvvv 4674 . . . . . 6 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
119, 10syl6ib 160 . . . . 5 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 → ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1211pm4.71rd 392 . . . 4 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹)))
13 19.41vvv 1897 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹))
14 eleq1 2233 . . . . . . . 8 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹))
15 df-br 3990 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹)
16 vex 2733 . . . . . . . . . 10 𝑥 ∈ V
17 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
18 vex 2733 . . . . . . . . . 10 𝑧 ∈ V
19 brtposg 6233 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2016, 17, 18, 19mp3an 1332 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
2115, 20bitr3i 185 . . . . . . . 8 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧)
2214, 21bitrdi 195 . . . . . . 7 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2322pm5.32i 451 . . . . . 6 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
24233exbii 1600 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2513, 24bitr3i 185 . . . 4 ((∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2612, 25bitrdi 195 . . 3 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)))
2726abbi2dv 2289 . 2 (Rel dom 𝐹 → tpos 𝐹 = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)})
28 df-oprab 5857 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)}
2927, 28eqtr4di 2221 1 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  {cab 2156  Vcvv 2730  wss 3121  cop 3586   class class class wbr 3989   × cxp 4609  ccnv 4610  dom cdm 4611  Rel wrel 4616  {coprab 5854  tpos ctpos 6223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-oprab 5857  df-tpos 6224
This theorem is referenced by:  tposoprab  6259
  Copyright terms: Public domain W3C validator