ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos3 GIF version

Theorem dftpos3 6315
Description: Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4667. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem dftpos3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relcnv 5043 . . . . . . . . . 10 Rel dom 𝐹
2 dmtpos 6309 . . . . . . . . . . 11 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
32releqd 4743 . . . . . . . . . 10 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ↔ Rel dom 𝐹))
41, 3mpbiri 168 . . . . . . . . 9 (Rel dom 𝐹 → Rel dom tpos 𝐹)
5 reltpos 6303 . . . . . . . . 9 Rel tpos 𝐹
64, 5jctil 312 . . . . . . . 8 (Rel dom 𝐹 → (Rel tpos 𝐹 ∧ Rel dom tpos 𝐹))
7 relrelss 5192 . . . . . . . 8 ((Rel tpos 𝐹 ∧ Rel dom tpos 𝐹) ↔ tpos 𝐹 ⊆ ((V × V) × V))
86, 7sylib 122 . . . . . . 7 (Rel dom 𝐹 → tpos 𝐹 ⊆ ((V × V) × V))
98sseld 3178 . . . . . 6 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹𝑤 ∈ ((V × V) × V)))
10 elvvv 4722 . . . . . 6 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
119, 10imbitrdi 161 . . . . 5 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 → ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1211pm4.71rd 394 . . . 4 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹)))
13 19.41vvv 1916 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹))
14 eleq1 2256 . . . . . . . 8 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹))
15 df-br 4030 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹)
16 vex 2763 . . . . . . . . . 10 𝑥 ∈ V
17 vex 2763 . . . . . . . . . 10 𝑦 ∈ V
18 vex 2763 . . . . . . . . . 10 𝑧 ∈ V
19 brtposg 6307 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2016, 17, 18, 19mp3an 1348 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
2115, 20bitr3i 186 . . . . . . . 8 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧)
2214, 21bitrdi 196 . . . . . . 7 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2322pm5.32i 454 . . . . . 6 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
24233exbii 1618 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2513, 24bitr3i 186 . . . 4 ((∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2612, 25bitrdi 196 . . 3 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)))
2726abbi2dv 2312 . 2 (Rel dom 𝐹 → tpos 𝐹 = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)})
28 df-oprab 5922 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)}
2927, 28eqtr4di 2244 1 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  {cab 2179  Vcvv 2760  wss 3153  cop 3621   class class class wbr 4029   × cxp 4657  ccnv 4658  dom cdm 4659  Rel wrel 4664  {coprab 5919  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-oprab 5922  df-tpos 6298
This theorem is referenced by:  tposoprab  6333
  Copyright terms: Public domain W3C validator