ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeeanv GIF version

Theorem eeeanv 1926
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eeeanv (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝑥,𝑧,𝜓   𝑥,𝑦,𝜒
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑧)

Proof of Theorem eeeanv
StepHypRef Expression
1 df-3an 975 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
213exbii 1600 . 2 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒))
3 eeanv 1925 . . 3 (∃𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
43exbii 1598 . 2 (∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
5 eeanv 1925 . . . 4 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
65anbi1i 455 . . 3 ((∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
7 19.41v 1895 . . 3 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
8 df-3an 975 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
96, 7, 83bitr4i 211 . 2 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
102, 4, 93bitri 205 1 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454
This theorem is referenced by:  vtocl3  2786  spc3egv  2822  spc3gv  2823  eloprabga  5940  prarloc  7465
  Copyright terms: Public domain W3C validator