| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eeeanv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | 3exbii 1621 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 3 | eeanv 1951 | . . 3 ⊢ (∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
| 4 | 3 | exbii 1619 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
| 5 | eeanv 1951 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 6 | 5 | anbi1i 458 | . . 3 ⊢ ((∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) |
| 7 | 19.41v 1917 | . . 3 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
| 8 | df-3an 982 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) | |
| 9 | 6, 7, 8 | 3bitr4i 212 | . 2 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
| 10 | 2, 4, 9 | 3bitri 206 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 |
| This theorem is referenced by: vtocl3 2820 spc3egv 2856 spc3gv 2857 eloprabga 6009 prarloc 7570 |
| Copyright terms: Public domain | W3C validator |