ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeeanv GIF version

Theorem eeeanv 1863
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eeeanv (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝑥,𝑧,𝜓   𝑥,𝑦,𝜒
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑧)

Proof of Theorem eeeanv
StepHypRef Expression
1 df-3an 929 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
213exbii 1550 . 2 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒))
3 eeanv 1862 . . 3 (∃𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
43exbii 1548 . 2 (∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
5 eeanv 1862 . . . 4 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
65anbi1i 447 . . 3 ((∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
7 19.41v 1837 . . 3 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
8 df-3an 929 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
96, 7, 83bitr4i 211 . 2 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
102, 4, 93bitri 205 1 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 927  wex 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-4 1452  ax-17 1471  ax-ial 1479
This theorem depends on definitions:  df-bi 116  df-3an 929  df-nf 1402
This theorem is referenced by:  vtocl3  2689  spc3egv  2724  spc3gv  2725  eloprabga  5773  prarloc  7159
  Copyright terms: Public domain W3C validator