Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eeeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eeeanv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | 3exbii 1600 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | eeanv 1925 | . . 3 ⊢ (∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
4 | 3 | exbii 1598 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
5 | eeanv 1925 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
6 | 5 | anbi1i 455 | . . 3 ⊢ ((∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) |
7 | 19.41v 1895 | . . 3 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
8 | df-3an 975 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) | |
9 | 6, 7, 8 | 3bitr4i 211 | . 2 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
10 | 2, 4, 9 | 3bitri 205 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 |
This theorem is referenced by: vtocl3 2786 spc3egv 2822 spc3gv 2823 eloprabga 5940 prarloc 7465 |
Copyright terms: Public domain | W3C validator |