ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeeanv GIF version

Theorem eeeanv 1933
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eeeanv (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝑥,𝑧,𝜓   𝑥,𝑦,𝜒
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑧)

Proof of Theorem eeeanv
StepHypRef Expression
1 df-3an 980 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
213exbii 1607 . 2 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒))
3 eeanv 1932 . . 3 (∃𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
43exbii 1605 . 2 (∃𝑥𝑦𝑧((𝜑𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
5 eeanv 1932 . . . 4 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
65anbi1i 458 . . 3 ((∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
7 19.41v 1902 . . 3 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝑦(𝜑𝜓) ∧ ∃𝑧𝜒))
8 df-3an 980 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒))
96, 7, 83bitr4i 212 . 2 (∃𝑥(∃𝑦(𝜑𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
102, 4, 93bitri 206 1 (∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461
This theorem is referenced by:  vtocl3  2795  spc3egv  2831  spc3gv  2832  eloprabga  5964  prarloc  7504
  Copyright terms: Public domain W3C validator