Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eeeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eeeanv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | 3exbii 1595 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | eeanv 1920 | . . 3 ⊢ (∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
4 | 3 | exbii 1593 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
5 | eeanv 1920 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
6 | 5 | anbi1i 454 | . . 3 ⊢ ((∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) |
7 | 19.41v 1890 | . . 3 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
8 | df-3an 970 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) | |
9 | 6, 7, 8 | 3bitr4i 211 | . 2 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
10 | 2, 4, 9 | 3bitri 205 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 |
This theorem is referenced by: vtocl3 2782 spc3egv 2818 spc3gv 2819 eloprabga 5929 prarloc 7444 |
Copyright terms: Public domain | W3C validator |