Step | Hyp | Ref
| Expression |
1 | | excom 1664 |
. . . 4
⊢
(∃𝑧∃𝑤∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤∃𝑧∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
2 | | exrot4 1691 |
. . . . 5
⊢
(∃𝑧∃𝑤∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
3 | | opeq1 3779 |
. . . . . . . . . . . 12
⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
4 | 3 | eqeq2d 2189 |
. . . . . . . . . . 11
⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑣 = ⟨𝑤, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
5 | 4 | pm5.32ri 455 |
. . . . . . . . . 10
⊢ ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
6 | 5 | anbi1i 458 |
. . . . . . . . 9
⊢ (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑)) |
7 | | anass 401 |
. . . . . . . . 9
⊢ (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
8 | | an32 562 |
. . . . . . . . 9
⊢ (((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
9 | 6, 7, 8 | 3bitr3i 210 |
. . . . . . . 8
⊢ ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
10 | 9 | exbii 1605 |
. . . . . . 7
⊢
(∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
11 | | vex 2741 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
12 | | vex 2741 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
13 | 11, 12 | opex 4230 |
. . . . . . . . 9
⊢
⟨𝑥, 𝑦⟩ ∈ V |
14 | 13 | isseti 2746 |
. . . . . . . 8
⊢
∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ |
15 | | 19.42v 1906 |
. . . . . . . 8
⊢
(∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩)) |
16 | 14, 15 | mpbiran2 941 |
. . . . . . 7
⊢
(∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)) |
17 | 10, 16 | bitri 184 |
. . . . . 6
⊢
(∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)) |
18 | 17 | 3exbii 1607 |
. . . . 5
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)) |
19 | 2, 18 | bitri 184 |
. . . 4
⊢
(∃𝑧∃𝑤∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)) |
20 | | 19.42vv 1911 |
. . . . 5
⊢
(∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
21 | 20 | 2exbii 1606 |
. . . 4
⊢
(∃𝑤∃𝑧∃𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
22 | 1, 19, 21 | 3bitr3i 210 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
23 | 22 | abbii 2293 |
. 2
⊢ {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))} |
24 | | df-oprab 5879 |
. 2
⊢
{⟨⟨𝑥,
𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
25 | | df-opab 4066 |
. 2
⊢
{⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤∃𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))} |
26 | 23, 24, 25 | 3eqtr4i 2208 |
1
⊢
{⟨⟨𝑥,
𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |