ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab2 GIF version

Theorem dfoprab2 5880
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 excom 1651 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 exrot4 1678 . . . . 5 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 opeq1 3752 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
43eqeq2d 2176 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑣 = ⟨𝑤, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54pm5.32ri 451 . . . . . . . . . 10 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
65anbi1i 454 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑))
7 anass 399 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
8 an32 552 . . . . . . . . 9 (((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
96, 7, 83bitr3i 209 . . . . . . . 8 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
109exbii 1592 . . . . . . 7 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
11 vex 2724 . . . . . . . . . 10 𝑥 ∈ V
12 vex 2724 . . . . . . . . . 10 𝑦 ∈ V
1311, 12opex 4201 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
1413isseti 2729 . . . . . . . 8 𝑤 𝑤 = ⟨𝑥, 𝑦
15 19.42v 1893 . . . . . . . 8 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩))
1614, 15mpbiran2 930 . . . . . . 7 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1710, 16bitri 183 . . . . . 6 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
18173exbii 1594 . . . . 5 (∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
192, 18bitri 183 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
20 19.42vv 1898 . . . . 5 (∃𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
21202exbii 1593 . . . 4 (∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
221, 19, 213bitr3i 209 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2322abbii 2280 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
24 df-oprab 5840 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
25 df-opab 4038 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2623, 24, 253eqtr4i 2195 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1342  wex 1479  {cab 2150  cop 3573  {copab 4036  {coprab 5837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-opab 4038  df-oprab 5840
This theorem is referenced by:  reloprab  5881  cbvoprab1  5905  cbvoprab12  5907  cbvoprab3  5909  dmoprab  5914  rnoprab  5916  ssoprab2i  5922  mpomptx  5924  resoprab  5929  funoprabg  5932  ov6g  5970  dfoprab3s  6150  xpcomco  6783
  Copyright terms: Public domain W3C validator