ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1619
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 266 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1616 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1632  19.42h  1698  19.42  1699  risset  2522  morex  2944  dfuni2  3837  eluni2  3839  unipr  3849  dfiun2g  3944  uniuni  4482  cnvco  4847  imadif  5334  funimaexglem  5337  pceu  12433  bdcuni  15368  bj-axun2  15407
  Copyright terms: Public domain W3C validator