| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exancom | GIF version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | exbii 1628 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.29r 1644 19.42h 1710 19.42 1711 risset 2534 morex 2957 dfuni2 3852 eluni2 3854 unipr 3864 dfiun2g 3959 uniuni 4498 cnvco 4863 imadif 5354 funimaexglem 5357 pceu 12618 bdcuni 15812 bj-axun2 15851 |
| Copyright terms: Public domain | W3C validator |