Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exancom | GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1593 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.29r 1609 19.42h 1675 19.42 1676 risset 2494 morex 2910 dfuni2 3791 eluni2 3793 unipr 3803 dfiun2g 3898 uniuni 4429 cnvco 4789 imadif 5268 funimaexglem 5271 pceu 12227 bdcuni 13758 bj-axun2 13797 |
Copyright terms: Public domain | W3C validator |