ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1630
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 266 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1627 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1643  19.42h  1709  19.42  1710  risset  2533  morex  2956  dfuni2  3851  eluni2  3853  unipr  3863  dfiun2g  3958  uniuni  4497  cnvco  4862  imadif  5353  funimaexglem  5356  pceu  12589  bdcuni  15774  bj-axun2  15813
  Copyright terms: Public domain W3C validator