ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1654
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 266 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1651 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1667  19.42h  1733  19.42  1734  risset  2558  morex  2987  dfuni2  3890  eluni2  3892  unipr  3902  dfiun2g  3997  uniuni  4542  cnvco  4907  imadif  5401  funimaexglem  5404  pceu  12818  bdcuni  16239  bj-axun2  16278
  Copyright terms: Public domain W3C validator