ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1596
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 264 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1593 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.29r  1609  19.42h  1675  19.42  1676  risset  2494  morex  2910  dfuni2  3791  eluni2  3793  unipr  3803  dfiun2g  3898  uniuni  4429  cnvco  4789  imadif  5268  funimaexglem  5271  pceu  12227  bdcuni  13758  bj-axun2  13797
  Copyright terms: Public domain W3C validator