ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1622
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 266 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1619 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1635  19.42h  1701  19.42  1702  risset  2525  morex  2948  dfuni2  3842  eluni2  3844  unipr  3854  dfiun2g  3949  uniuni  4487  cnvco  4852  imadif  5339  funimaexglem  5342  pceu  12489  bdcuni  15606  bj-axun2  15645
  Copyright terms: Public domain W3C validator