ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1601
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 264 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21exbii 1598 1 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.29r  1614  19.42h  1680  19.42  1681  risset  2498  morex  2914  dfuni2  3798  eluni2  3800  unipr  3810  dfiun2g  3905  uniuni  4436  cnvco  4796  imadif  5278  funimaexglem  5281  pceu  12249  bdcuni  13911  bj-axun2  13950
  Copyright terms: Public domain W3C validator