Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orcomb | GIF version |
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) |
Ref | Expression |
---|---|
3orcomb | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 723 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
2 | 1 | orbi2i 757 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) |
3 | 3orass 976 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
4 | 3orass 976 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜓) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 ∨ w3o 972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-3or 974 |
This theorem is referenced by: eueq3dc 2904 sotritrieq 4310 exmidontriimlem3 7200 |
Copyright terms: Public domain | W3C validator |