| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orcomb | GIF version | ||
| Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| 3orcomb | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 729 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
| 2 | 1 | orbi2i 763 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) |
| 3 | 3orass 983 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 4 | 3orass 983 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜓) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: eueq3dc 2938 sotritrieq 4360 exmidontriimlem3 7290 |
| Copyright terms: Public domain | W3C validator |