ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritrieq GIF version

Theorem sotritrieq 4416
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
Hypotheses
Ref Expression
sotritric.or 𝑅 Or 𝐴
sotritric.tri ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Assertion
Ref Expression
sotritrieq ((𝐵𝐴𝐶𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotritrieq
StepHypRef Expression
1 sotritric.or . . . . . . 7 𝑅 Or 𝐴
2 sonr 4408 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
31, 2mpan 424 . . . . . 6 (𝐵𝐴 → ¬ 𝐵𝑅𝐵)
4 breq2 4087 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
54notbid 671 . . . . . 6 (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅𝐶))
63, 5syl5ibcom 155 . . . . 5 (𝐵𝐴 → (𝐵 = 𝐶 → ¬ 𝐵𝑅𝐶))
7 breq1 4086 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐶𝑅𝐵))
87notbid 671 . . . . . 6 (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐶𝑅𝐵))
93, 8syl5ibcom 155 . . . . 5 (𝐵𝐴 → (𝐵 = 𝐶 → ¬ 𝐶𝑅𝐵))
106, 9jcad 307 . . . 4 (𝐵𝐴 → (𝐵 = 𝐶 → (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)))
11 ioran 757 . . . 4 (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))
1210, 11imbitrrdi 162 . . 3 (𝐵𝐴 → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1312adantr 276 . 2 ((𝐵𝐴𝐶𝐴) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
14 sotritric.tri . . 3 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
15 3orrot 1008 . . . . . . 7 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵 = 𝐶𝐶𝑅𝐵𝐵𝑅𝐶))
16 3orcomb 1011 . . . . . . 7 ((𝐵 = 𝐶𝐶𝑅𝐵𝐵𝑅𝐶) ↔ (𝐵 = 𝐶𝐵𝑅𝐶𝐶𝑅𝐵))
17 3orass 1005 . . . . . . 7 ((𝐵 = 𝐶𝐵𝑅𝐶𝐶𝑅𝐵) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1815, 16, 173bitri 206 . . . . . 6 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1918biimpi 120 . . . . 5 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
2019orcomd 734 . . . 4 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → ((𝐵𝑅𝐶𝐶𝑅𝐵) ∨ 𝐵 = 𝐶))
2120ord 729 . . 3 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵 = 𝐶))
2214, 21syl 14 . 2 ((𝐵𝐴𝐶𝐴) → (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵 = 𝐶))
2313, 22impbid 129 1 ((𝐵𝐴𝐶𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3o 1001   = wceq 1395  wcel 2200   class class class wbr 4083   Or wor 4386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-po 4387  df-iso 4388
This theorem is referenced by:  distrlem4prl  7771  distrlem4pru  7772
  Copyright terms: Public domain W3C validator