ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orcomb Unicode version

Theorem 3orcomb 977
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
3orcomb  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )

Proof of Theorem 3orcomb
StepHypRef Expression
1 orcom 718 . . 3  |-  ( ( ps  \/  ch )  <->  ( ch  \/  ps )
)
21orbi2i 752 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ph  \/  ( ch  \/  ps ) ) )
3 3orass 971 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
4 3orass 971 . 2  |-  ( (
ph  \/  ch  \/  ps )  <->  ( ph  \/  ( ch  \/  ps ) ) )
52, 3, 43bitr4i 211 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    \/ w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  eueq3dc  2900  sotritrieq  4303  exmidontriimlem3  7179
  Copyright terms: Public domain W3C validator