ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orcomb Unicode version

Theorem 3orcomb 987
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.)
Assertion
Ref Expression
3orcomb  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )

Proof of Theorem 3orcomb
StepHypRef Expression
1 orcom 728 . . 3  |-  ( ( ps  \/  ch )  <->  ( ch  \/  ps )
)
21orbi2i 762 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ph  \/  ( ch  \/  ps ) ) )
3 3orass 981 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
4 3orass 981 . 2  |-  ( (
ph  \/  ch  \/  ps )  <->  ( ph  \/  ( ch  \/  ps ) ) )
52, 3, 43bitr4i 212 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708    \/ w3o 977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-3or 979
This theorem is referenced by:  eueq3dc  2913  sotritrieq  4327  exmidontriimlem3  7224
  Copyright terms: Public domain W3C validator