ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom4 GIF version

Theorem binom4 13691
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11447, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))

Proof of Theorem binom4
StepHypRef Expression
1 df-4 8939 . . . 4 4 = (3 + 1)
21oveq2i 5864 . . 3 ((𝐴 + 𝐵)↑4) = ((𝐴 + 𝐵)↑(3 + 1))
3 addcl 7899 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 3nn0 9153 . . . 4 3 ∈ ℕ0
5 expp1 10483 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
63, 4, 5sylancl 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
72, 6eqtrid 2215 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
8 binom3 10593 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
98oveq1d 5868 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)))
10 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 expcl 10494 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
1210, 4, 11sylancl 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
13 3cn 8953 . . . . . . 7 3 ∈ ℂ
1410sqcld 10607 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
15 simpr 109 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1614, 15mulcld 7940 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
17 mulcl 7901 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1813, 16, 17sylancr 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1912, 18addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
2015sqcld 10607 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2110, 20mulcld 7940 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
22 mulcl 7901 . . . . . . 7 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
2313, 21, 22sylancr 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
24 expcl 10494 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
2515, 4, 24sylancl 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
2623, 25addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
2719, 26addcld 7939 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) ∈ ℂ)
2827, 10, 15adddid 7944 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)))
291oveq2i 5864 . . . . . . . . 9 (𝐴↑4) = (𝐴↑(3 + 1))
30 expp1 10483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3110, 4, 30sylancl 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3229, 31eqtr2id 2216 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐴) = (𝐴↑4))
3313a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 3 ∈ ℂ)
3433, 16, 10mulassd 7943 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · (((𝐴↑2) · 𝐵) · 𝐴)))
3514, 15, 10mul32d 8072 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = (((𝐴↑2) · 𝐴) · 𝐵))
36 df-3 8938 . . . . . . . . . . . . . 14 3 = (2 + 1)
3736oveq2i 5864 . . . . . . . . . . . . 13 (𝐴↑3) = (𝐴↑(2 + 1))
38 2nn0 9152 . . . . . . . . . . . . . 14 2 ∈ ℕ0
39 expp1 10483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4010, 38, 39sylancl 411 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4137, 40eqtr2id 2216 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐴) = (𝐴↑3))
4241oveq1d 5868 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐴) · 𝐵) = ((𝐴↑3) · 𝐵))
4335, 42eqtrd 2203 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = ((𝐴↑3) · 𝐵))
4443oveq2d 5869 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐴)) = (3 · ((𝐴↑3) · 𝐵)))
4534, 44eqtrd 2203 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · ((𝐴↑3) · 𝐵)))
4632, 45oveq12d 5871 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4712, 10, 18, 46joinlmuladdmuld 7947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4833, 21, 10mulassd 7943 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴 · (𝐵↑2)) · 𝐴)))
4910, 20, 10mul32d 8072 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴 · 𝐴) · (𝐵↑2)))
5010sqvald 10606 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
5150oveq1d 5868 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴 · 𝐴) · (𝐵↑2)))
5249, 51eqtr4d 2206 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴↑2) · (𝐵↑2)))
5352oveq2d 5869 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐴)) = (3 · ((𝐴↑2) · (𝐵↑2))))
5448, 53eqtrd 2203 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴↑2) · (𝐵↑2))))
5525, 10mulcomd 7941 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐴) = (𝐴 · (𝐵↑3)))
5654, 55oveq12d 5871 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5723, 10, 25, 56joinlmuladdmuld 7947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5847, 57oveq12d 5871 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
5919, 10, 26, 58joinlmuladdmuld 7947 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6019, 26, 15adddird 7945 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)))
6133, 16, 15mulassd 7943 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · (((𝐴↑2) · 𝐵) · 𝐵)))
6214, 15, 15mulassd 7943 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵 · 𝐵)))
6315sqvald 10606 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
6463oveq2d 5869 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴↑2) · (𝐵 · 𝐵)))
6562, 64eqtr4d 2206 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵↑2)))
6665oveq2d 5869 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐵)) = (3 · ((𝐴↑2) · (𝐵↑2))))
6761, 66eqtrd 2203 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · ((𝐴↑2) · (𝐵↑2))))
6867oveq2d 5869 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
6912, 15, 18, 68joinlmuladdmuld 7947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7033, 21, 15mulassd 7943 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · ((𝐴 · (𝐵↑2)) · 𝐵)))
7110, 20, 15mulassd 7943 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · ((𝐵↑2) · 𝐵)))
7236oveq2i 5864 . . . . . . . . . . . . 13 (𝐵↑3) = (𝐵↑(2 + 1))
73 expp1 10483 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7415, 38, 73sylancl 411 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7572, 74eqtr2id 2216 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐵) = (𝐵↑3))
7675oveq2d 5869 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · ((𝐵↑2) · 𝐵)) = (𝐴 · (𝐵↑3)))
7771, 76eqtrd 2203 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · (𝐵↑3)))
7877oveq2d 5869 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐵)) = (3 · (𝐴 · (𝐵↑3))))
7970, 78eqtrd 2203 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · (𝐴 · (𝐵↑3))))
801oveq2i 5864 . . . . . . . . 9 (𝐵↑4) = (𝐵↑(3 + 1))
81 expp1 10483 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8215, 4, 81sylancl 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8380, 82eqtr2id 2216 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐵) = (𝐵↑4))
8479, 83oveq12d 5871 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8523, 15, 25, 84joinlmuladdmuld 7947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8669, 85oveq12d 5871 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)) = ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
8712, 15mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐵) ∈ ℂ)
8814, 20mulcld 7940 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) ∈ ℂ)
89 mulcl 7901 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · (𝐵↑2)) ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9013, 88, 89sylancr 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9110, 25mulcld 7940 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑3)) ∈ ℂ)
92 mulcl 7901 . . . . . . . 8 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑3)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
9313, 91, 92sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
94 4nn0 9154 . . . . . . . 8 4 ∈ ℕ0
95 expcl 10494 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐵↑4) ∈ ℂ)
9615, 94, 95sylancl 411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑4) ∈ ℂ)
9793, 96addcld 7939 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) ∈ ℂ)
9887, 90, 97addassd 7942 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
9960, 86, 983eqtrd 2207 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10059, 99oveq12d 5871 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
101 expcl 10494 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
10210, 94, 101sylancl 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑4) ∈ ℂ)
103 mulcl 7901 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑3) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
10413, 87, 103sylancr 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
105102, 104addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) ∈ ℂ)
10690, 91addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) ∈ ℂ)
10790, 97addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) ∈ ℂ)
108105, 106, 87, 107add4d 8088 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
109102, 104, 87addassd 7942 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
1101oveq1i 5863 . . . . . . . . 9 (4 · ((𝐴↑3) · 𝐵)) = ((3 + 1) · ((𝐴↑3) · 𝐵))
111 ax-1cn 7867 . . . . . . . . . . 11 1 ∈ ℂ
112111a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
11333, 112, 87adddird 7945 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 1) · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
114110, 113eqtrid 2215 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
11587mulid2d 7938 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑3) · 𝐵)) = ((𝐴↑3) · 𝐵))
116115oveq2d 5869 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
117114, 116eqtrd 2203 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
118117oveq2d 5869 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
119109, 118eqtr4d 2206 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))))
12090, 91, 90, 97add4d 8088 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
121 3p3e6 9020 . . . . . . . . 9 (3 + 3) = 6
122121oveq1i 5863 . . . . . . . 8 ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = (6 · ((𝐴↑2) · (𝐵↑2)))
12333, 33, 88adddird 7945 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
124122, 123eqtr3id 2217 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (6 · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
125 3p1e4 9013 . . . . . . . . . . . . 13 (3 + 1) = 4
12613, 111, 125addcomli 8064 . . . . . . . . . . . 12 (1 + 3) = 4
127126oveq1i 5863 . . . . . . . . . . 11 ((1 + 3) · (𝐴 · (𝐵↑3))) = (4 · (𝐴 · (𝐵↑3)))
128112, 33, 91adddird 7945 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 3) · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
129127, 128eqtr3id 2217 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
13091mulid2d 7938 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑3))) = (𝐴 · (𝐵↑3)))
131130oveq1d 5868 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
132129, 131eqtrd 2203 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
133132oveq1d 5868 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)))
13491, 93, 96addassd 7942 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
135133, 134eqtrd 2203 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
136124, 135oveq12d 5871 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
137120, 136eqtr4d 2206 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
138119, 137oveq12d 5871 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
139108, 138eqtrd 2203 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
14028, 100, 1393eqtrd 2207 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
1417, 9, 1403eqtrd 2207 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  1c1 7775   + caddc 7777   · cmul 7779  2c2 8929  3c3 8930  4c4 8931  6c6 8933  0cn0 9135  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator