ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom4 GIF version

Theorem binom4 14064
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11476, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))

Proof of Theorem binom4
StepHypRef Expression
1 df-4 8969 . . . 4 4 = (3 + 1)
21oveq2i 5880 . . 3 ((𝐴 + 𝐵)↑4) = ((𝐴 + 𝐵)↑(3 + 1))
3 addcl 7927 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 3nn0 9183 . . . 4 3 ∈ ℕ0
5 expp1 10513 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
63, 4, 5sylancl 413 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
72, 6eqtrid 2222 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
8 binom3 10623 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
98oveq1d 5884 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)))
10 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 expcl 10524 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
1210, 4, 11sylancl 413 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
13 3cn 8983 . . . . . . 7 3 ∈ ℂ
1410sqcld 10637 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
15 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1614, 15mulcld 7968 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
17 mulcl 7929 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1813, 16, 17sylancr 414 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1912, 18addcld 7967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
2015sqcld 10637 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2110, 20mulcld 7968 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
22 mulcl 7929 . . . . . . 7 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
2313, 21, 22sylancr 414 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
24 expcl 10524 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
2515, 4, 24sylancl 413 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
2623, 25addcld 7967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
2719, 26addcld 7967 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) ∈ ℂ)
2827, 10, 15adddid 7972 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)))
291oveq2i 5880 . . . . . . . . 9 (𝐴↑4) = (𝐴↑(3 + 1))
30 expp1 10513 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3110, 4, 30sylancl 413 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3229, 31eqtr2id 2223 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐴) = (𝐴↑4))
3313a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 3 ∈ ℂ)
3433, 16, 10mulassd 7971 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · (((𝐴↑2) · 𝐵) · 𝐴)))
3514, 15, 10mul32d 8100 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = (((𝐴↑2) · 𝐴) · 𝐵))
36 df-3 8968 . . . . . . . . . . . . . 14 3 = (2 + 1)
3736oveq2i 5880 . . . . . . . . . . . . 13 (𝐴↑3) = (𝐴↑(2 + 1))
38 2nn0 9182 . . . . . . . . . . . . . 14 2 ∈ ℕ0
39 expp1 10513 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4010, 38, 39sylancl 413 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4137, 40eqtr2id 2223 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐴) = (𝐴↑3))
4241oveq1d 5884 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐴) · 𝐵) = ((𝐴↑3) · 𝐵))
4335, 42eqtrd 2210 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = ((𝐴↑3) · 𝐵))
4443oveq2d 5885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐴)) = (3 · ((𝐴↑3) · 𝐵)))
4534, 44eqtrd 2210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · ((𝐴↑3) · 𝐵)))
4632, 45oveq12d 5887 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4712, 10, 18, 46joinlmuladdmuld 7975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4833, 21, 10mulassd 7971 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴 · (𝐵↑2)) · 𝐴)))
4910, 20, 10mul32d 8100 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴 · 𝐴) · (𝐵↑2)))
5010sqvald 10636 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
5150oveq1d 5884 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴 · 𝐴) · (𝐵↑2)))
5249, 51eqtr4d 2213 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴↑2) · (𝐵↑2)))
5352oveq2d 5885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐴)) = (3 · ((𝐴↑2) · (𝐵↑2))))
5448, 53eqtrd 2210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴↑2) · (𝐵↑2))))
5525, 10mulcomd 7969 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐴) = (𝐴 · (𝐵↑3)))
5654, 55oveq12d 5887 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5723, 10, 25, 56joinlmuladdmuld 7975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5847, 57oveq12d 5887 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
5919, 10, 26, 58joinlmuladdmuld 7975 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6019, 26, 15adddird 7973 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)))
6133, 16, 15mulassd 7971 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · (((𝐴↑2) · 𝐵) · 𝐵)))
6214, 15, 15mulassd 7971 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵 · 𝐵)))
6315sqvald 10636 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
6463oveq2d 5885 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴↑2) · (𝐵 · 𝐵)))
6562, 64eqtr4d 2213 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵↑2)))
6665oveq2d 5885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐵)) = (3 · ((𝐴↑2) · (𝐵↑2))))
6761, 66eqtrd 2210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · ((𝐴↑2) · (𝐵↑2))))
6867oveq2d 5885 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
6912, 15, 18, 68joinlmuladdmuld 7975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7033, 21, 15mulassd 7971 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · ((𝐴 · (𝐵↑2)) · 𝐵)))
7110, 20, 15mulassd 7971 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · ((𝐵↑2) · 𝐵)))
7236oveq2i 5880 . . . . . . . . . . . . 13 (𝐵↑3) = (𝐵↑(2 + 1))
73 expp1 10513 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7415, 38, 73sylancl 413 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7572, 74eqtr2id 2223 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐵) = (𝐵↑3))
7675oveq2d 5885 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · ((𝐵↑2) · 𝐵)) = (𝐴 · (𝐵↑3)))
7771, 76eqtrd 2210 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · (𝐵↑3)))
7877oveq2d 5885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐵)) = (3 · (𝐴 · (𝐵↑3))))
7970, 78eqtrd 2210 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · (𝐴 · (𝐵↑3))))
801oveq2i 5880 . . . . . . . . 9 (𝐵↑4) = (𝐵↑(3 + 1))
81 expp1 10513 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8215, 4, 81sylancl 413 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8380, 82eqtr2id 2223 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐵) = (𝐵↑4))
8479, 83oveq12d 5887 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8523, 15, 25, 84joinlmuladdmuld 7975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8669, 85oveq12d 5887 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)) = ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
8712, 15mulcld 7968 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐵) ∈ ℂ)
8814, 20mulcld 7968 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) ∈ ℂ)
89 mulcl 7929 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · (𝐵↑2)) ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9013, 88, 89sylancr 414 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9110, 25mulcld 7968 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑3)) ∈ ℂ)
92 mulcl 7929 . . . . . . . 8 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑3)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
9313, 91, 92sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
94 4nn0 9184 . . . . . . . 8 4 ∈ ℕ0
95 expcl 10524 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐵↑4) ∈ ℂ)
9615, 94, 95sylancl 413 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑4) ∈ ℂ)
9793, 96addcld 7967 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) ∈ ℂ)
9887, 90, 97addassd 7970 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
9960, 86, 983eqtrd 2214 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10059, 99oveq12d 5887 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
101 expcl 10524 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
10210, 94, 101sylancl 413 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑4) ∈ ℂ)
103 mulcl 7929 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑3) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
10413, 87, 103sylancr 414 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
105102, 104addcld 7967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) ∈ ℂ)
10690, 91addcld 7967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) ∈ ℂ)
10790, 97addcld 7967 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) ∈ ℂ)
108105, 106, 87, 107add4d 8116 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
109102, 104, 87addassd 7970 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
1101oveq1i 5879 . . . . . . . . 9 (4 · ((𝐴↑3) · 𝐵)) = ((3 + 1) · ((𝐴↑3) · 𝐵))
111 ax-1cn 7895 . . . . . . . . . . 11 1 ∈ ℂ
112111a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
11333, 112, 87adddird 7973 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 1) · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
114110, 113eqtrid 2222 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
11587mulid2d 7966 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑3) · 𝐵)) = ((𝐴↑3) · 𝐵))
116115oveq2d 5885 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
117114, 116eqtrd 2210 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
118117oveq2d 5885 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
119109, 118eqtr4d 2213 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))))
12090, 91, 90, 97add4d 8116 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
121 3p3e6 9050 . . . . . . . . 9 (3 + 3) = 6
122121oveq1i 5879 . . . . . . . 8 ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = (6 · ((𝐴↑2) · (𝐵↑2)))
12333, 33, 88adddird 7973 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
124122, 123eqtr3id 2224 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (6 · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
125 3p1e4 9043 . . . . . . . . . . . . 13 (3 + 1) = 4
12613, 111, 125addcomli 8092 . . . . . . . . . . . 12 (1 + 3) = 4
127126oveq1i 5879 . . . . . . . . . . 11 ((1 + 3) · (𝐴 · (𝐵↑3))) = (4 · (𝐴 · (𝐵↑3)))
128112, 33, 91adddird 7973 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 3) · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
129127, 128eqtr3id 2224 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
13091mulid2d 7966 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑3))) = (𝐴 · (𝐵↑3)))
131130oveq1d 5884 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
132129, 131eqtrd 2210 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
133132oveq1d 5884 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)))
13491, 93, 96addassd 7970 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
135133, 134eqtrd 2210 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
136124, 135oveq12d 5887 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
137120, 136eqtr4d 2213 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
138119, 137oveq12d 5887 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
139108, 138eqtrd 2210 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
14028, 100, 1393eqtrd 2214 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
1417, 9, 1403eqtrd 2214 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  (class class class)co 5869  cc 7800  1c1 7803   + caddc 7805   · cmul 7807  2c2 8959  3c3 8960  4c4 8961  6c6 8963  0cn0 9165  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator