Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version |
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p2e3 | ⊢ (1 + 2) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8928 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7846 | . 2 ⊢ 1 ∈ ℂ | |
3 | 2p1e3 8990 | . 2 ⊢ (2 + 1) = 3 | |
4 | 1, 2, 3 | addcomli 8043 | 1 ⊢ (1 + 2) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 2c2 8908 3c3 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-addrcl 7850 ax-addcom 7853 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 df-3 8917 |
This theorem is referenced by: binom3 10572 3lcm2e6woprm 12018 1kp2ke3k 13605 |
Copyright terms: Public domain | W3C validator |