![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version |
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p2e3 | ⊢ (1 + 2) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9015 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7929 | . 2 ⊢ 1 ∈ ℂ | |
3 | 2p1e3 9077 | . 2 ⊢ (2 + 1) = 3 | |
4 | 1, 2, 3 | addcomli 8127 | 1 ⊢ (1 + 2) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5892 1c1 7837 + caddc 7839 2c2 8995 3c3 8996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-addrcl 7933 ax-addcom 7936 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 df-2 9003 df-3 9004 |
This theorem is referenced by: binom3 10664 3lcm2e6woprm 12113 1kp2ke3k 14913 |
Copyright terms: Public domain | W3C validator |