ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 8983
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 8920 . 2 2 ∈ ℂ
2 ax-1cn 7838 . 2 1 ∈ ℂ
3 2p1e3 8982 . 2 (2 + 1) = 3
41, 2, 3addcomli 8035 1 (1 + 2) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1342  (class class class)co 5837  1c1 7746   + caddc 7748  2c2 8900  3c3 8901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-11 1493  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-addrcl 7842  ax-addcom 7845
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-in 3118  df-ss 3125  df-2 8908  df-3 8909
This theorem is referenced by:  binom3  10562  3lcm2e6woprm  12004  1kp2ke3k  13459
  Copyright terms: Public domain W3C validator