Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version |
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p2e3 | ⊢ (1 + 2) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8949 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7867 | . 2 ⊢ 1 ∈ ℂ | |
3 | 2p1e3 9011 | . 2 ⊢ (2 + 1) = 3 | |
4 | 1, 2, 3 | addcomli 8064 | 1 ⊢ (1 + 2) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 1c1 7775 + caddc 7777 2c2 8929 3c3 8930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-addrcl 7871 ax-addcom 7874 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-2 8937 df-3 8938 |
This theorem is referenced by: binom3 10593 3lcm2e6woprm 12040 1kp2ke3k 13759 |
Copyright terms: Public domain | W3C validator |