ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 9170
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 9106 . 2 2 ∈ ℂ
2 ax-1cn 8017 . 2 1 ∈ ℂ
3 2p1e3 9169 . 2 (2 + 1) = 3
41, 2, 3addcomli 8216 1 (1 + 2) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1372  (class class class)co 5943  1c1 7925   + caddc 7927  2c2 9086  3c3 9087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-addrcl 8021  ax-addcom 8024
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-2 9094  df-3 9095
This theorem is referenced by:  binom3  10800  3lcm2e6woprm  12379  2exp16  12731  1kp2ke3k  15622
  Copyright terms: Public domain W3C validator