ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 8847
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 8784 . 2 2 ∈ ℂ
2 ax-1cn 7706 . 2 1 ∈ ℂ
3 2p1e3 8846 . 2 (2 + 1) = 3
41, 2, 3addcomli 7900 1 (1 + 2) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1331  (class class class)co 5767  1c1 7614   + caddc 7616  2c2 8764  3c3 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-addrcl 7710  ax-addcom 7713
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-in 3072  df-ss 3079  df-2 8772  df-3 8773
This theorem is referenced by:  binom3  10402  3lcm2e6woprm  11756  1kp2ke3k  12925
  Copyright terms: Public domain W3C validator