| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version | ||
| Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9106 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8017 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 2p1e3 9169 | . 2 ⊢ (2 + 1) = 3 | |
| 4 | 1, 2, 3 | addcomli 8216 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 1c1 7925 + caddc 7927 2c2 9086 3c3 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-addrcl 8021 ax-addcom 8024 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-2 9094 df-3 9095 |
| This theorem is referenced by: binom3 10800 3lcm2e6woprm 12379 2exp16 12731 1kp2ke3k 15622 |
| Copyright terms: Public domain | W3C validator |