| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version | ||
| Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9177 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8088 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 2p1e3 9240 | . 2 ⊢ (2 + 1) = 3 | |
| 4 | 1, 2, 3 | addcomli 8287 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 1c1 7996 + caddc 7998 2c2 9157 3c3 9158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-addrcl 8092 ax-addcom 8095 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 df-3 9166 |
| This theorem is referenced by: binom3 10874 3lcm2e6woprm 12603 2exp16 12955 1kp2ke3k 16046 |
| Copyright terms: Public domain | W3C validator |