![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version |
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p2e3 | ⊢ (1 + 2) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9055 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
3 | 2p1e3 9118 | . 2 ⊢ (2 + 1) = 3 | |
4 | 1, 2, 3 | addcomli 8166 | 1 ⊢ (1 + 2) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 + caddc 7877 2c2 9035 3c3 9036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-addrcl 7971 ax-addcom 7974 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-2 9043 df-3 9044 |
This theorem is referenced by: binom3 10731 3lcm2e6woprm 12227 1kp2ke3k 15286 |
Copyright terms: Public domain | W3C validator |