| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version | ||
| Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9061 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 7972 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 2p1e3 9124 | . 2 ⊢ (2 + 1) = 3 | |
| 4 | 1, 2, 3 | addcomli 8171 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 1c1 7880 + caddc 7882 2c2 9041 3c3 9042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-addrcl 7976 ax-addcom 7979 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9049 df-3 9050 |
| This theorem is referenced by: binom3 10749 3lcm2e6woprm 12254 2exp16 12606 1kp2ke3k 15370 |
| Copyright terms: Public domain | W3C validator |