ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 9201
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 9137 . 2 2 ∈ ℂ
2 ax-1cn 8048 . 2 1 ∈ ℂ
3 2p1e3 9200 . 2 (2 + 1) = 3
41, 2, 3addcomli 8247 1 (1 + 2) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5962  1c1 7956   + caddc 7958  2c2 9117  3c3 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-addrcl 8052  ax-addcom 8055
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-2 9125  df-3 9126
This theorem is referenced by:  binom3  10834  3lcm2e6woprm  12493  2exp16  12845  1kp2ke3k  15830
  Copyright terms: Public domain W3C validator