ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 8991
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 8928 . 2 2 ∈ ℂ
2 ax-1cn 7846 . 2 1 ∈ ℂ
3 2p1e3 8990 . 2 (2 + 1) = 3
41, 2, 3addcomli 8043 1 (1 + 2) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5842  1c1 7754   + caddc 7756  2c2 8908  3c3 8909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-addrcl 7850  ax-addcom 7853
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-2 8916  df-3 8917
This theorem is referenced by:  binom3  10572  3lcm2e6woprm  12018  1kp2ke3k  13605
  Copyright terms: Public domain W3C validator