Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version |
Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p2e3 | ⊢ (1 + 2) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8920 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7838 | . 2 ⊢ 1 ∈ ℂ | |
3 | 2p1e3 8982 | . 2 ⊢ (2 + 1) = 3 | |
4 | 1, 2, 3 | addcomli 8035 | 1 ⊢ (1 + 2) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1342 (class class class)co 5837 1c1 7746 + caddc 7748 2c2 8900 3c3 8901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-11 1493 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-addrcl 7842 ax-addcom 7845 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-in 3118 df-ss 3125 df-2 8908 df-3 8909 |
This theorem is referenced by: binom3 10562 3lcm2e6woprm 12004 1kp2ke3k 13459 |
Copyright terms: Public domain | W3C validator |