| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version | ||
| Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9137 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8048 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 2p1e3 9200 | . 2 ⊢ (2 + 1) = 3 | |
| 4 | 1, 2, 3 | addcomli 8247 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5962 1c1 7956 + caddc 7958 2c2 9117 3c3 9118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-addrcl 8052 ax-addcom 8055 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-2 9125 df-3 9126 |
| This theorem is referenced by: binom3 10834 3lcm2e6woprm 12493 2exp16 12845 1kp2ke3k 15830 |
| Copyright terms: Public domain | W3C validator |