| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1p2e3 | GIF version | ||
| Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9107 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8018 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 2p1e3 9170 | . 2 ⊢ (2 + 1) = 3 | |
| 4 | 1, 2, 3 | addcomli 8217 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 1c1 7926 + caddc 7928 2c2 9087 3c3 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-addrcl 8022 ax-addcom 8025 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 df-3 9096 |
| This theorem is referenced by: binom3 10802 3lcm2e6woprm 12408 2exp16 12760 1kp2ke3k 15660 |
| Copyright terms: Public domain | W3C validator |