ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq23lt0 GIF version

Theorem cosq23lt0 12927
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
cosq23lt0 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)

Proof of Theorem cosq23lt0
StepHypRef Expression
1 elioore 9702 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
21recnd 7801 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
3 sinhalfpip 12914 . . 3 (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
42, 3syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
5 halfpire 12886 . . . . . 6 (π / 2) ∈ ℝ
65a1i 9 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ)
76, 1readdcld 7802 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ)
8 pidiv2halves 12889 . . . . 5 ((π / 2) + (π / 2)) = π
95rexri 7830 . . . . . . . 8 (π / 2) ∈ ℝ*
10 3re 8801 . . . . . . . . . 10 3 ∈ ℝ
1110, 5remulcli 7787 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
1211rexri 7830 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
13 elioo2 9711 . . . . . . . 8 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 422 . . . . . . 7 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 997 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴)
166, 1, 6, 15ltadd2dd 8191 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴))
178, 16eqbrtrrid 3964 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴))
1811a1i 9 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ)
1914simp3bi 998 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
201, 18, 6, 19ltadd2dd 8191 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2))))
21 ax-1cn 7720 . . . . . . . 8 1 ∈ ℂ
22 3cn 8802 . . . . . . . 8 3 ∈ ℂ
235recni 7785 . . . . . . . 8 (π / 2) ∈ ℂ
2421, 22, 23adddiri 7784 . . . . . . 7 ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2)))
25 3p1e4 8862 . . . . . . . . 9 (3 + 1) = 4
2622, 21, 25addcomli 7914 . . . . . . . 8 (1 + 3) = 4
2726oveq1i 5784 . . . . . . 7 ((1 + 3) · (π / 2)) = (4 · (π / 2))
2823mulid2i 7776 . . . . . . . 8 (1 · (π / 2)) = (π / 2)
2928oveq1i 5784 . . . . . . 7 ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2)))
3024, 27, 293eqtr3ri 2169 . . . . . 6 ((π / 2) + (3 · (π / 2))) = (4 · (π / 2))
31 4cn 8805 . . . . . . 7 4 ∈ ℂ
32 2cn 8798 . . . . . . . 8 2 ∈ ℂ
33 2ap0 8820 . . . . . . . 8 2 # 0
3432, 33pm3.2i 270 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
35 picn 12881 . . . . . . 7 π ∈ ℂ
36 div32ap 8459 . . . . . . 7 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2)))
3731, 34, 35, 36mp3an 1315 . . . . . 6 ((4 / 2) · π) = (4 · (π / 2))
38 4d2e2 8887 . . . . . . 7 (4 / 2) = 2
3938oveq1i 5784 . . . . . 6 ((4 / 2) · π) = (2 · π)
4030, 37, 393eqtr2i 2166 . . . . 5 ((π / 2) + (3 · (π / 2))) = (2 · π)
4120, 40breqtrdi 3969 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π))
42 pire 12880 . . . . . 6 π ∈ ℝ
4342rexri 7830 . . . . 5 π ∈ ℝ*
44 2re 8797 . . . . . . 7 2 ∈ ℝ
4544, 42remulcli 7787 . . . . . 6 (2 · π) ∈ ℝ
4645rexri 7830 . . . . 5 (2 · π) ∈ ℝ*
47 elioo2 9711 . . . . 5 ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))))
4843, 46, 47mp2an 422 . . . 4 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))
497, 17, 41, 48syl3anbrc 1165 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π)))
50 sinq34lt0t 12925 . . 3 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0)
5149, 50syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0)
524, 51eqbrtrrd 3952 1 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632  *cxr 7806   < clt 7807   # cap 8350   / cdiv 8439  2c2 8778  3c3 8779  4c4 8780  (,)cioo 9678  sincsin 11357  cosccos 11358  πcpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805
This theorem is referenced by:  coseq0q4123  12928  cos02pilt1  12945
  Copyright terms: Public domain W3C validator