| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosq23lt0 | GIF version | ||
| Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
| Ref | Expression |
|---|---|
| cosq23lt0 | ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 10054 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8121 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ) |
| 3 | sinhalfpip 15367 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
| 5 | halfpire 15339 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ) |
| 7 | 6, 1 | readdcld 8122 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ) |
| 8 | pidiv2halves 15342 | . . . . 5 ⊢ ((π / 2) + (π / 2)) = π | |
| 9 | 5 | rexri 8150 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ* |
| 10 | 3re 9130 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
| 11 | 10, 5 | remulcli 8106 | . . . . . . . . 9 ⊢ (3 · (π / 2)) ∈ ℝ |
| 12 | 11 | rexri 8150 | . . . . . . . 8 ⊢ (3 · (π / 2)) ∈ ℝ* |
| 13 | elioo2 10063 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
| 14 | 9, 12, 13 | mp2an 426 | . . . . . . 7 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
| 15 | 14 | simp2bi 1016 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴) |
| 16 | 6, 1, 6, 15 | ltadd2dd 8515 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴)) |
| 17 | 8, 16 | eqbrtrrid 4087 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴)) |
| 18 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ) |
| 19 | 14 | simp3bi 1017 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2))) |
| 20 | 1, 18, 6, 19 | ltadd2dd 8515 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2)))) |
| 21 | ax-1cn 8038 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 22 | 3cn 9131 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 23 | 5 | recni 8104 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
| 24 | 21, 22, 23 | adddiri 8103 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2))) |
| 25 | 3p1e4 9192 | . . . . . . . . 9 ⊢ (3 + 1) = 4 | |
| 26 | 22, 21, 25 | addcomli 8237 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
| 27 | 26 | oveq1i 5967 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = (4 · (π / 2)) |
| 28 | 23 | mullidi 8095 | . . . . . . . 8 ⊢ (1 · (π / 2)) = (π / 2) |
| 29 | 28 | oveq1i 5967 | . . . . . . 7 ⊢ ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2))) |
| 30 | 24, 27, 29 | 3eqtr3ri 2236 | . . . . . 6 ⊢ ((π / 2) + (3 · (π / 2))) = (4 · (π / 2)) |
| 31 | 4cn 9134 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 32 | 2cn 9127 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 33 | 2ap0 9149 | . . . . . . . 8 ⊢ 2 # 0 | |
| 34 | 32, 33 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 35 | picn 15334 | . . . . . . 7 ⊢ π ∈ ℂ | |
| 36 | div32ap 8785 | . . . . . . 7 ⊢ ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2))) | |
| 37 | 31, 34, 35, 36 | mp3an 1350 | . . . . . 6 ⊢ ((4 / 2) · π) = (4 · (π / 2)) |
| 38 | 4d2e2 9217 | . . . . . . 7 ⊢ (4 / 2) = 2 | |
| 39 | 38 | oveq1i 5967 | . . . . . 6 ⊢ ((4 / 2) · π) = (2 · π) |
| 40 | 30, 37, 39 | 3eqtr2i 2233 | . . . . 5 ⊢ ((π / 2) + (3 · (π / 2))) = (2 · π) |
| 41 | 20, 40 | breqtrdi 4092 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π)) |
| 42 | pire 15333 | . . . . . 6 ⊢ π ∈ ℝ | |
| 43 | 42 | rexri 8150 | . . . . 5 ⊢ π ∈ ℝ* |
| 44 | 2re 9126 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 45 | 44, 42 | remulcli 8106 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
| 46 | 45 | rexri 8150 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
| 47 | elioo2 10063 | . . . . 5 ⊢ ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))) | |
| 48 | 43, 46, 47 | mp2an 426 | . . . 4 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))) |
| 49 | 7, 17, 41, 48 | syl3anbrc 1184 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π))) |
| 50 | sinq34lt0t 15378 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0) | |
| 51 | 49, 50 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0) |
| 52 | 4, 51 | eqbrtrrd 4075 | 1 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 ℝcr 7944 0cc0 7945 1c1 7946 + caddc 7948 · cmul 7950 ℝ*cxr 8126 < clt 8127 # cap 8674 / cdiv 8765 2c2 9107 3c3 9108 4c4 9109 (,)cioo 10030 sincsin 12030 cosccos 12031 πcpi 12033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 ax-pre-suploc 8066 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-disj 4028 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-map 6750 df-pm 6751 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-xneg 9914 df-xadd 9915 df-ioo 10034 df-ioc 10035 df-ico 10036 df-icc 10037 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-bc 10915 df-ihash 10943 df-shft 11201 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 df-ef 12034 df-sin 12036 df-cos 12037 df-pi 12039 df-rest 13148 df-topgen 13167 df-psmet 14380 df-xmet 14381 df-met 14382 df-bl 14383 df-mopn 14384 df-top 14545 df-topon 14558 df-bases 14590 df-ntr 14643 df-cn 14735 df-cnp 14736 df-tx 14800 df-cncf 15118 df-limced 15203 df-dvap 15204 |
| This theorem is referenced by: coseq0q4123 15381 cos02pilt1 15398 |
| Copyright terms: Public domain | W3C validator |