ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq23lt0 GIF version

Theorem cosq23lt0 15069
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
cosq23lt0 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)

Proof of Theorem cosq23lt0
StepHypRef Expression
1 elioore 9987 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
21recnd 8055 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
3 sinhalfpip 15056 . . 3 (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
42, 3syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
5 halfpire 15028 . . . . . 6 (π / 2) ∈ ℝ
65a1i 9 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ)
76, 1readdcld 8056 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ)
8 pidiv2halves 15031 . . . . 5 ((π / 2) + (π / 2)) = π
95rexri 8084 . . . . . . . 8 (π / 2) ∈ ℝ*
10 3re 9064 . . . . . . . . . 10 3 ∈ ℝ
1110, 5remulcli 8040 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
1211rexri 8084 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
13 elioo2 9996 . . . . . . . 8 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 426 . . . . . . 7 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 1015 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴)
166, 1, 6, 15ltadd2dd 8449 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴))
178, 16eqbrtrrid 4069 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴))
1811a1i 9 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ)
1914simp3bi 1016 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
201, 18, 6, 19ltadd2dd 8449 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2))))
21 ax-1cn 7972 . . . . . . . 8 1 ∈ ℂ
22 3cn 9065 . . . . . . . 8 3 ∈ ℂ
235recni 8038 . . . . . . . 8 (π / 2) ∈ ℂ
2421, 22, 23adddiri 8037 . . . . . . 7 ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2)))
25 3p1e4 9126 . . . . . . . . 9 (3 + 1) = 4
2622, 21, 25addcomli 8171 . . . . . . . 8 (1 + 3) = 4
2726oveq1i 5932 . . . . . . 7 ((1 + 3) · (π / 2)) = (4 · (π / 2))
2823mullidi 8029 . . . . . . . 8 (1 · (π / 2)) = (π / 2)
2928oveq1i 5932 . . . . . . 7 ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2)))
3024, 27, 293eqtr3ri 2226 . . . . . 6 ((π / 2) + (3 · (π / 2))) = (4 · (π / 2))
31 4cn 9068 . . . . . . 7 4 ∈ ℂ
32 2cn 9061 . . . . . . . 8 2 ∈ ℂ
33 2ap0 9083 . . . . . . . 8 2 # 0
3432, 33pm3.2i 272 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
35 picn 15023 . . . . . . 7 π ∈ ℂ
36 div32ap 8719 . . . . . . 7 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2)))
3731, 34, 35, 36mp3an 1348 . . . . . 6 ((4 / 2) · π) = (4 · (π / 2))
38 4d2e2 9151 . . . . . . 7 (4 / 2) = 2
3938oveq1i 5932 . . . . . 6 ((4 / 2) · π) = (2 · π)
4030, 37, 393eqtr2i 2223 . . . . 5 ((π / 2) + (3 · (π / 2))) = (2 · π)
4120, 40breqtrdi 4074 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π))
42 pire 15022 . . . . . 6 π ∈ ℝ
4342rexri 8084 . . . . 5 π ∈ ℝ*
44 2re 9060 . . . . . . 7 2 ∈ ℝ
4544, 42remulcli 8040 . . . . . 6 (2 · π) ∈ ℝ
4645rexri 8084 . . . . 5 (2 · π) ∈ ℝ*
47 elioo2 9996 . . . . 5 ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))))
4843, 46, 47mp2an 426 . . . 4 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))
497, 17, 41, 48syl3anbrc 1183 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π)))
50 sinq34lt0t 15067 . . 3 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0)
5149, 50syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0)
524, 51eqbrtrrd 4057 1 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  *cxr 8060   < clt 8061   # cap 8608   / cdiv 8699  2c2 9041  3c3 9042  4c4 9043  (,)cioo 9963  sincsin 11809  cosccos 11810  πcpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  coseq0q4123  15070  cos02pilt1  15087
  Copyright terms: Public domain W3C validator