Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cosq23lt0 | GIF version |
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
Ref | Expression |
---|---|
cosq23lt0 | ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9869 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 7948 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ) |
3 | sinhalfpip 13535 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
5 | halfpire 13507 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ) |
7 | 6, 1 | readdcld 7949 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ) |
8 | pidiv2halves 13510 | . . . . 5 ⊢ ((π / 2) + (π / 2)) = π | |
9 | 5 | rexri 7977 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ* |
10 | 3re 8952 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
11 | 10, 5 | remulcli 7934 | . . . . . . . . 9 ⊢ (3 · (π / 2)) ∈ ℝ |
12 | 11 | rexri 7977 | . . . . . . . 8 ⊢ (3 · (π / 2)) ∈ ℝ* |
13 | elioo2 9878 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
14 | 9, 12, 13 | mp2an 424 | . . . . . . 7 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
15 | 14 | simp2bi 1008 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴) |
16 | 6, 1, 6, 15 | ltadd2dd 8341 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴)) |
17 | 8, 16 | eqbrtrrid 4025 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴)) |
18 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ) |
19 | 14 | simp3bi 1009 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2))) |
20 | 1, 18, 6, 19 | ltadd2dd 8341 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2)))) |
21 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
22 | 3cn 8953 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
23 | 5 | recni 7932 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
24 | 21, 22, 23 | adddiri 7931 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2))) |
25 | 3p1e4 9013 | . . . . . . . . 9 ⊢ (3 + 1) = 4 | |
26 | 22, 21, 25 | addcomli 8064 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
27 | 26 | oveq1i 5863 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = (4 · (π / 2)) |
28 | 23 | mulid2i 7923 | . . . . . . . 8 ⊢ (1 · (π / 2)) = (π / 2) |
29 | 28 | oveq1i 5863 | . . . . . . 7 ⊢ ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2))) |
30 | 24, 27, 29 | 3eqtr3ri 2200 | . . . . . 6 ⊢ ((π / 2) + (3 · (π / 2))) = (4 · (π / 2)) |
31 | 4cn 8956 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
32 | 2cn 8949 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
33 | 2ap0 8971 | . . . . . . . 8 ⊢ 2 # 0 | |
34 | 32, 33 | pm3.2i 270 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
35 | picn 13502 | . . . . . . 7 ⊢ π ∈ ℂ | |
36 | div32ap 8609 | . . . . . . 7 ⊢ ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2))) | |
37 | 31, 34, 35, 36 | mp3an 1332 | . . . . . 6 ⊢ ((4 / 2) · π) = (4 · (π / 2)) |
38 | 4d2e2 9038 | . . . . . . 7 ⊢ (4 / 2) = 2 | |
39 | 38 | oveq1i 5863 | . . . . . 6 ⊢ ((4 / 2) · π) = (2 · π) |
40 | 30, 37, 39 | 3eqtr2i 2197 | . . . . 5 ⊢ ((π / 2) + (3 · (π / 2))) = (2 · π) |
41 | 20, 40 | breqtrdi 4030 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π)) |
42 | pire 13501 | . . . . . 6 ⊢ π ∈ ℝ | |
43 | 42 | rexri 7977 | . . . . 5 ⊢ π ∈ ℝ* |
44 | 2re 8948 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
45 | 44, 42 | remulcli 7934 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
46 | 45 | rexri 7977 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
47 | elioo2 9878 | . . . . 5 ⊢ ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))) | |
48 | 43, 46, 47 | mp2an 424 | . . . 4 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))) |
49 | 7, 17, 41, 48 | syl3anbrc 1176 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π))) |
50 | sinq34lt0t 13546 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0) | |
51 | 49, 50 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0) |
52 | 4, 51 | eqbrtrrd 4013 | 1 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ℝ*cxr 7953 < clt 7954 # cap 8500 / cdiv 8589 2c2 8929 3c3 8930 4c4 8931 (,)cioo 9845 sincsin 11607 cosccos 11608 πcpi 11610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-pre-suploc 7895 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-ioc 9850 df-ico 9851 df-icc 9852 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-sin 11613 df-cos 11614 df-pi 11616 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 |
This theorem is referenced by: coseq0q4123 13549 cos02pilt1 13566 |
Copyright terms: Public domain | W3C validator |