| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosq23lt0 | GIF version | ||
| Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
| Ref | Expression |
|---|---|
| cosq23lt0 | ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 10104 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8171 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ) |
| 3 | sinhalfpip 15488 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
| 5 | halfpire 15460 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ) |
| 7 | 6, 1 | readdcld 8172 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ) |
| 8 | pidiv2halves 15463 | . . . . 5 ⊢ ((π / 2) + (π / 2)) = π | |
| 9 | 5 | rexri 8200 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ* |
| 10 | 3re 9180 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
| 11 | 10, 5 | remulcli 8156 | . . . . . . . . 9 ⊢ (3 · (π / 2)) ∈ ℝ |
| 12 | 11 | rexri 8200 | . . . . . . . 8 ⊢ (3 · (π / 2)) ∈ ℝ* |
| 13 | elioo2 10113 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
| 14 | 9, 12, 13 | mp2an 426 | . . . . . . 7 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
| 15 | 14 | simp2bi 1037 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴) |
| 16 | 6, 1, 6, 15 | ltadd2dd 8565 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴)) |
| 17 | 8, 16 | eqbrtrrid 4118 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴)) |
| 18 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ) |
| 19 | 14 | simp3bi 1038 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2))) |
| 20 | 1, 18, 6, 19 | ltadd2dd 8565 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2)))) |
| 21 | ax-1cn 8088 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 22 | 3cn 9181 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 23 | 5 | recni 8154 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
| 24 | 21, 22, 23 | adddiri 8153 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2))) |
| 25 | 3p1e4 9242 | . . . . . . . . 9 ⊢ (3 + 1) = 4 | |
| 26 | 22, 21, 25 | addcomli 8287 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
| 27 | 26 | oveq1i 6010 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = (4 · (π / 2)) |
| 28 | 23 | mullidi 8145 | . . . . . . . 8 ⊢ (1 · (π / 2)) = (π / 2) |
| 29 | 28 | oveq1i 6010 | . . . . . . 7 ⊢ ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2))) |
| 30 | 24, 27, 29 | 3eqtr3ri 2259 | . . . . . 6 ⊢ ((π / 2) + (3 · (π / 2))) = (4 · (π / 2)) |
| 31 | 4cn 9184 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 32 | 2cn 9177 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 33 | 2ap0 9199 | . . . . . . . 8 ⊢ 2 # 0 | |
| 34 | 32, 33 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 35 | picn 15455 | . . . . . . 7 ⊢ π ∈ ℂ | |
| 36 | div32ap 8835 | . . . . . . 7 ⊢ ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2))) | |
| 37 | 31, 34, 35, 36 | mp3an 1371 | . . . . . 6 ⊢ ((4 / 2) · π) = (4 · (π / 2)) |
| 38 | 4d2e2 9267 | . . . . . . 7 ⊢ (4 / 2) = 2 | |
| 39 | 38 | oveq1i 6010 | . . . . . 6 ⊢ ((4 / 2) · π) = (2 · π) |
| 40 | 30, 37, 39 | 3eqtr2i 2256 | . . . . 5 ⊢ ((π / 2) + (3 · (π / 2))) = (2 · π) |
| 41 | 20, 40 | breqtrdi 4123 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π)) |
| 42 | pire 15454 | . . . . . 6 ⊢ π ∈ ℝ | |
| 43 | 42 | rexri 8200 | . . . . 5 ⊢ π ∈ ℝ* |
| 44 | 2re 9176 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 45 | 44, 42 | remulcli 8156 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
| 46 | 45 | rexri 8200 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
| 47 | elioo2 10113 | . . . . 5 ⊢ ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))) | |
| 48 | 43, 46, 47 | mp2an 426 | . . . 4 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))) |
| 49 | 7, 17, 41, 48 | syl3anbrc 1205 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π))) |
| 50 | sinq34lt0t 15499 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0) | |
| 51 | 49, 50 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0) |
| 52 | 4, 51 | eqbrtrrd 4106 | 1 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 ℝ*cxr 8176 < clt 8177 # cap 8724 / cdiv 8815 2c2 9157 3c3 9158 4c4 9159 (,)cioo 10080 sincsin 12150 cosccos 12151 πcpi 12153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ioc 10085 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-sin 12156 df-cos 12157 df-pi 12159 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: coseq0q4123 15502 cos02pilt1 15519 |
| Copyright terms: Public domain | W3C validator |