ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq23lt0 GIF version

Theorem cosq23lt0 15380
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
cosq23lt0 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)

Proof of Theorem cosq23lt0
StepHypRef Expression
1 elioore 10054 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
21recnd 8121 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
3 sinhalfpip 15367 . . 3 (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
42, 3syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴))
5 halfpire 15339 . . . . . 6 (π / 2) ∈ ℝ
65a1i 9 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ)
76, 1readdcld 8122 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ)
8 pidiv2halves 15342 . . . . 5 ((π / 2) + (π / 2)) = π
95rexri 8150 . . . . . . . 8 (π / 2) ∈ ℝ*
10 3re 9130 . . . . . . . . . 10 3 ∈ ℝ
1110, 5remulcli 8106 . . . . . . . . 9 (3 · (π / 2)) ∈ ℝ
1211rexri 8150 . . . . . . . 8 (3 · (π / 2)) ∈ ℝ*
13 elioo2 10063 . . . . . . . 8 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 426 . . . . . . 7 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 1016 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴)
166, 1, 6, 15ltadd2dd 8515 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴))
178, 16eqbrtrrid 4087 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴))
1811a1i 9 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ)
1914simp3bi 1017 . . . . . 6 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
201, 18, 6, 19ltadd2dd 8515 . . . . 5 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2))))
21 ax-1cn 8038 . . . . . . . 8 1 ∈ ℂ
22 3cn 9131 . . . . . . . 8 3 ∈ ℂ
235recni 8104 . . . . . . . 8 (π / 2) ∈ ℂ
2421, 22, 23adddiri 8103 . . . . . . 7 ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2)))
25 3p1e4 9192 . . . . . . . . 9 (3 + 1) = 4
2622, 21, 25addcomli 8237 . . . . . . . 8 (1 + 3) = 4
2726oveq1i 5967 . . . . . . 7 ((1 + 3) · (π / 2)) = (4 · (π / 2))
2823mullidi 8095 . . . . . . . 8 (1 · (π / 2)) = (π / 2)
2928oveq1i 5967 . . . . . . 7 ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2)))
3024, 27, 293eqtr3ri 2236 . . . . . 6 ((π / 2) + (3 · (π / 2))) = (4 · (π / 2))
31 4cn 9134 . . . . . . 7 4 ∈ ℂ
32 2cn 9127 . . . . . . . 8 2 ∈ ℂ
33 2ap0 9149 . . . . . . . 8 2 # 0
3432, 33pm3.2i 272 . . . . . . 7 (2 ∈ ℂ ∧ 2 # 0)
35 picn 15334 . . . . . . 7 π ∈ ℂ
36 div32ap 8785 . . . . . . 7 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2)))
3731, 34, 35, 36mp3an 1350 . . . . . 6 ((4 / 2) · π) = (4 · (π / 2))
38 4d2e2 9217 . . . . . . 7 (4 / 2) = 2
3938oveq1i 5967 . . . . . 6 ((4 / 2) · π) = (2 · π)
4030, 37, 393eqtr2i 2233 . . . . 5 ((π / 2) + (3 · (π / 2))) = (2 · π)
4120, 40breqtrdi 4092 . . . 4 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π))
42 pire 15333 . . . . . 6 π ∈ ℝ
4342rexri 8150 . . . . 5 π ∈ ℝ*
44 2re 9126 . . . . . . 7 2 ∈ ℝ
4544, 42remulcli 8106 . . . . . 6 (2 · π) ∈ ℝ
4645rexri 8150 . . . . 5 (2 · π) ∈ ℝ*
47 elioo2 10063 . . . . 5 ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))))
4843, 46, 47mp2an 426 . . . 4 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))
497, 17, 41, 48syl3anbrc 1184 . . 3 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π)))
50 sinq34lt0t 15378 . . 3 (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0)
5149, 50syl 14 . 2 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0)
524, 51eqbrtrrd 4075 1 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950  *cxr 8126   < clt 8127   # cap 8674   / cdiv 8765  2c2 9107  3c3 9108  4c4 9109  (,)cioo 10030  sincsin 12030  cosccos 12031  πcpi 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-pre-suploc 8066  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ioo 10034  df-ioc 10035  df-ico 10036  df-icc 10037  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-cos 12037  df-pi 12039  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204
This theorem is referenced by:  coseq0q4123  15381  cos02pilt1  15398
  Copyright terms: Public domain W3C validator