![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosq23lt0 | GIF version |
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
Ref | Expression |
---|---|
cosq23lt0 | ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9981 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 8050 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ) |
3 | sinhalfpip 14996 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
5 | halfpire 14968 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ) |
7 | 6, 1 | readdcld 8051 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ) |
8 | pidiv2halves 14971 | . . . . 5 ⊢ ((π / 2) + (π / 2)) = π | |
9 | 5 | rexri 8079 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ* |
10 | 3re 9058 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
11 | 10, 5 | remulcli 8035 | . . . . . . . . 9 ⊢ (3 · (π / 2)) ∈ ℝ |
12 | 11 | rexri 8079 | . . . . . . . 8 ⊢ (3 · (π / 2)) ∈ ℝ* |
13 | elioo2 9990 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
14 | 9, 12, 13 | mp2an 426 | . . . . . . 7 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
15 | 14 | simp2bi 1015 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴) |
16 | 6, 1, 6, 15 | ltadd2dd 8443 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴)) |
17 | 8, 16 | eqbrtrrid 4066 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴)) |
18 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ) |
19 | 14 | simp3bi 1016 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2))) |
20 | 1, 18, 6, 19 | ltadd2dd 8443 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2)))) |
21 | ax-1cn 7967 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
22 | 3cn 9059 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
23 | 5 | recni 8033 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
24 | 21, 22, 23 | adddiri 8032 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2))) |
25 | 3p1e4 9120 | . . . . . . . . 9 ⊢ (3 + 1) = 4 | |
26 | 22, 21, 25 | addcomli 8166 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
27 | 26 | oveq1i 5929 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = (4 · (π / 2)) |
28 | 23 | mullidi 8024 | . . . . . . . 8 ⊢ (1 · (π / 2)) = (π / 2) |
29 | 28 | oveq1i 5929 | . . . . . . 7 ⊢ ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2))) |
30 | 24, 27, 29 | 3eqtr3ri 2223 | . . . . . 6 ⊢ ((π / 2) + (3 · (π / 2))) = (4 · (π / 2)) |
31 | 4cn 9062 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
32 | 2cn 9055 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
33 | 2ap0 9077 | . . . . . . . 8 ⊢ 2 # 0 | |
34 | 32, 33 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
35 | picn 14963 | . . . . . . 7 ⊢ π ∈ ℂ | |
36 | div32ap 8713 | . . . . . . 7 ⊢ ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2))) | |
37 | 31, 34, 35, 36 | mp3an 1348 | . . . . . 6 ⊢ ((4 / 2) · π) = (4 · (π / 2)) |
38 | 4d2e2 9145 | . . . . . . 7 ⊢ (4 / 2) = 2 | |
39 | 38 | oveq1i 5929 | . . . . . 6 ⊢ ((4 / 2) · π) = (2 · π) |
40 | 30, 37, 39 | 3eqtr2i 2220 | . . . . 5 ⊢ ((π / 2) + (3 · (π / 2))) = (2 · π) |
41 | 20, 40 | breqtrdi 4071 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π)) |
42 | pire 14962 | . . . . . 6 ⊢ π ∈ ℝ | |
43 | 42 | rexri 8079 | . . . . 5 ⊢ π ∈ ℝ* |
44 | 2re 9054 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
45 | 44, 42 | remulcli 8035 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
46 | 45 | rexri 8079 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
47 | elioo2 9990 | . . . . 5 ⊢ ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))) | |
48 | 43, 46, 47 | mp2an 426 | . . . 4 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))) |
49 | 7, 17, 41, 48 | syl3anbrc 1183 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π))) |
50 | sinq34lt0t 15007 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0) | |
51 | 49, 50 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0) |
52 | 4, 51 | eqbrtrrd 4054 | 1 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 ℝ*cxr 8055 < clt 8056 # cap 8602 / cdiv 8693 2c2 9035 3c3 9036 4c4 9037 (,)cioo 9957 sincsin 11790 cosccos 11791 πcpi 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ioc 9962 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-cos 11797 df-pi 11799 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: coseq0q4123 15010 cos02pilt1 15027 |
Copyright terms: Public domain | W3C validator |