![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosq23lt0 | GIF version |
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.) |
Ref | Expression |
---|---|
cosq23lt0 | ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 9944 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 8017 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ) |
3 | sinhalfpip 14718 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
5 | halfpire 14690 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) ∈ ℝ) |
7 | 6, 1 | readdcld 8018 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ ℝ) |
8 | pidiv2halves 14693 | . . . . 5 ⊢ ((π / 2) + (π / 2)) = π | |
9 | 5 | rexri 8046 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ* |
10 | 3re 9024 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
11 | 10, 5 | remulcli 8002 | . . . . . . . . 9 ⊢ (3 · (π / 2)) ∈ ℝ |
12 | 11 | rexri 8046 | . . . . . . . 8 ⊢ (3 · (π / 2)) ∈ ℝ* |
13 | elioo2 9953 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2))))) | |
14 | 9, 12, 13 | mp2an 426 | . . . . . . 7 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴 ∧ 𝐴 < (3 · (π / 2)))) |
15 | 14 | simp2bi 1015 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (π / 2) < 𝐴) |
16 | 6, 1, 6, 15 | ltadd2dd 8410 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + (π / 2)) < ((π / 2) + 𝐴)) |
17 | 8, 16 | eqbrtrrid 4054 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → π < ((π / 2) + 𝐴)) |
18 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (3 · (π / 2)) ∈ ℝ) |
19 | 14 | simp3bi 1016 | . . . . . 6 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2))) |
20 | 1, 18, 6, 19 | ltadd2dd 8410 | . . . . 5 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < ((π / 2) + (3 · (π / 2)))) |
21 | ax-1cn 7935 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
22 | 3cn 9025 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
23 | 5 | recni 8000 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
24 | 21, 22, 23 | adddiri 7999 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = ((1 · (π / 2)) + (3 · (π / 2))) |
25 | 3p1e4 9085 | . . . . . . . . 9 ⊢ (3 + 1) = 4 | |
26 | 22, 21, 25 | addcomli 8133 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
27 | 26 | oveq1i 5907 | . . . . . . 7 ⊢ ((1 + 3) · (π / 2)) = (4 · (π / 2)) |
28 | 23 | mullidi 7991 | . . . . . . . 8 ⊢ (1 · (π / 2)) = (π / 2) |
29 | 28 | oveq1i 5907 | . . . . . . 7 ⊢ ((1 · (π / 2)) + (3 · (π / 2))) = ((π / 2) + (3 · (π / 2))) |
30 | 24, 27, 29 | 3eqtr3ri 2219 | . . . . . 6 ⊢ ((π / 2) + (3 · (π / 2))) = (4 · (π / 2)) |
31 | 4cn 9028 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
32 | 2cn 9021 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
33 | 2ap0 9043 | . . . . . . . 8 ⊢ 2 # 0 | |
34 | 32, 33 | pm3.2i 272 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
35 | picn 14685 | . . . . . . 7 ⊢ π ∈ ℂ | |
36 | div32ap 8680 | . . . . . . 7 ⊢ ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ π ∈ ℂ) → ((4 / 2) · π) = (4 · (π / 2))) | |
37 | 31, 34, 35, 36 | mp3an 1348 | . . . . . 6 ⊢ ((4 / 2) · π) = (4 · (π / 2)) |
38 | 4d2e2 9110 | . . . . . . 7 ⊢ (4 / 2) = 2 | |
39 | 38 | oveq1i 5907 | . . . . . 6 ⊢ ((4 / 2) · π) = (2 · π) |
40 | 30, 37, 39 | 3eqtr2i 2216 | . . . . 5 ⊢ ((π / 2) + (3 · (π / 2))) = (2 · π) |
41 | 20, 40 | breqtrdi 4059 | . . . 4 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) < (2 · π)) |
42 | pire 14684 | . . . . . 6 ⊢ π ∈ ℝ | |
43 | 42 | rexri 8046 | . . . . 5 ⊢ π ∈ ℝ* |
44 | 2re 9020 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
45 | 44, 42 | remulcli 8002 | . . . . . 6 ⊢ (2 · π) ∈ ℝ |
46 | 45 | rexri 8046 | . . . . 5 ⊢ (2 · π) ∈ ℝ* |
47 | elioo2 9953 | . . . . 5 ⊢ ((π ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π)))) | |
48 | 43, 46, 47 | mp2an 426 | . . . 4 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) ↔ (((π / 2) + 𝐴) ∈ ℝ ∧ π < ((π / 2) + 𝐴) ∧ ((π / 2) + 𝐴) < (2 · π))) |
49 | 7, 17, 41, 48 | syl3anbrc 1183 | . . 3 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → ((π / 2) + 𝐴) ∈ (π(,)(2 · π))) |
50 | sinq34lt0t 14729 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ (π(,)(2 · π)) → (sin‘((π / 2) + 𝐴)) < 0) | |
51 | 49, 50 | syl 14 | . 2 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (sin‘((π / 2) + 𝐴)) < 0) |
52 | 4, 51 | eqbrtrrd 4042 | 1 ⊢ (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℂcc 7840 ℝcr 7841 0cc0 7842 1c1 7843 + caddc 7845 · cmul 7847 ℝ*cxr 8022 < clt 8023 # cap 8569 / cdiv 8660 2c2 9001 3c3 9002 4c4 9003 (,)cioo 9920 sincsin 11687 cosccos 11688 πcpi 11690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 ax-pre-suploc 7963 ax-addf 7964 ax-mulf 7965 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-of 6107 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-map 6677 df-pm 6678 df-en 6768 df-dom 6769 df-fin 6770 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-9 9016 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-xneg 9804 df-xadd 9805 df-ioo 9924 df-ioc 9925 df-ico 9926 df-icc 9927 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-fac 10741 df-bc 10763 df-ihash 10791 df-shft 10859 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 df-ef 11691 df-sin 11693 df-cos 11694 df-pi 11696 df-rest 12749 df-topgen 12768 df-psmet 13873 df-xmet 13874 df-met 13875 df-bl 13876 df-mopn 13877 df-top 13975 df-topon 13988 df-bases 14020 df-ntr 14073 df-cn 14165 df-cnp 14166 df-tx 14230 df-cncf 14535 df-limced 14602 df-dvap 14603 |
This theorem is referenced by: coseq0q4123 14732 cos02pilt1 14749 |
Copyright terms: Public domain | W3C validator |