ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fac4 GIF version

Theorem fac4 10611
Description: The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
fac4 (!‘4) = 24

Proof of Theorem fac4
StepHypRef Expression
1 3nn0 9109 . . 3 3 ∈ ℕ0
2 facp1 10608 . . 3 (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1)))
31, 2ax-mp 5 . 2 (!‘(3 + 1)) = ((!‘3) · (3 + 1))
4 3p1e4 8969 . . 3 (3 + 1) = 4
54fveq2i 5472 . 2 (!‘(3 + 1)) = (!‘4)
6 fac3 10610 . . . 4 (!‘3) = 6
76, 4oveq12i 5837 . . 3 ((!‘3) · (3 + 1)) = (6 · 4)
8 6t4e24 9401 . . 3 (6 · 4) = 24
97, 8eqtri 2178 . 2 ((!‘3) · (3 + 1)) = 24
103, 5, 93eqtr3i 2186 1 (!‘4) = 24
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  cfv 5171  (class class class)co 5825  1c1 7734   + caddc 7736   · cmul 7738  2c2 8885  3c3 8886  4c4 8887  6c6 8889  0cn0 9091  cdc 9296  !cfa 10603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-5 8896  df-6 8897  df-7 8898  df-8 8899  df-9 8900  df-n0 9092  df-z 9169  df-dec 9297  df-uz 9441  df-seqfrec 10349  df-fac 10604
This theorem is referenced by:  ex-fac  13346
  Copyright terms: Public domain W3C validator