Proof of Theorem 2eu4
Step | Hyp | Ref
| Expression |
1 | | ax-17 1519 |
. . . 4
⊢
(∃𝑦𝜑 → ∀𝑧∃𝑦𝜑) |
2 | 1 | eu3h 2064 |
. . 3
⊢
(∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧))) |
3 | | ax-17 1519 |
. . . 4
⊢
(∃𝑥𝜑 → ∀𝑤∃𝑥𝜑) |
4 | 3 | eu3h 2064 |
. . 3
⊢
(∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
5 | 2, 4 | anbi12i 457 |
. 2
⊢
((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) ∧ (∃𝑦∃𝑥𝜑 ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)))) |
6 | | an4 581 |
. 2
⊢
(((∃𝑥∃𝑦𝜑 ∧ ∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) ∧ (∃𝑦∃𝑥𝜑 ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃𝑦∃𝑥𝜑) ∧ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)))) |
7 | | excom 1657 |
. . . . 5
⊢
(∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) |
8 | 7 | anbi2i 454 |
. . . 4
⊢
((∃𝑥∃𝑦𝜑 ∧ ∃𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜑)) |
9 | | anidm 394 |
. . . 4
⊢
((∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 8, 9 | bitri 183 |
. . 3
⊢
((∃𝑥∃𝑦𝜑 ∧ ∃𝑦∃𝑥𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | | hba1 1533 |
. . . . . . . . . 10
⊢
(∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) → ∀𝑥∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) |
12 | 11 | 19.3h 1546 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) |
13 | 12 | anbi2i 454 |
. . . . . . . 8
⊢
((∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
14 | | 19.26 1474 |
. . . . . . . 8
⊢
(∀𝑥(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
15 | | jcab 598 |
. . . . . . . . . . . 12
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) |
16 | 15 | albii 1463 |
. . . . . . . . . . 11
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) |
17 | | 19.26 1474 |
. . . . . . . . . . 11
⊢
(∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(𝜑 → 𝑦 = 𝑤))) |
18 | 16, 17 | bitri 183 |
. . . . . . . . . 10
⊢
(∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(𝜑 → 𝑦 = 𝑤))) |
19 | 18 | albii 1463 |
. . . . . . . . 9
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(𝜑 → 𝑦 = 𝑤))) |
20 | | 19.26 1474 |
. . . . . . . . 9
⊢
(∀𝑥(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
21 | 19, 20 | bitri 183 |
. . . . . . . 8
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
22 | 13, 14, 21 | 3bitr4ri 212 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
23 | | 19.26 1474 |
. . . . . . . . 9
⊢
(∀𝑦(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑦∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤))) |
24 | | hba1 1533 |
. . . . . . . . . . 11
⊢
(∀𝑦(𝜑 → 𝑥 = 𝑧) → ∀𝑦∀𝑦(𝜑 → 𝑥 = 𝑧)) |
25 | 24 | 19.3h 1546 |
. . . . . . . . . 10
⊢
(∀𝑦∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜑 → 𝑥 = 𝑧)) |
26 | | alcom 1471 |
. . . . . . . . . 10
⊢
(∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) |
27 | 25, 26 | anbi12i 457 |
. . . . . . . . 9
⊢
((∀𝑦∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
28 | 23, 27 | bitri 183 |
. . . . . . . 8
⊢
(∀𝑦(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
29 | 28 | albii 1463 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ ∀𝑥(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
30 | 22, 29 | bitr4i 186 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤))) |
31 | | 19.23v 1876 |
. . . . . . . 8
⊢
(∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ (∃𝑦𝜑 → 𝑥 = 𝑧)) |
32 | | 19.23v 1876 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ (∃𝑥𝜑 → 𝑦 = 𝑤)) |
33 | 31, 32 | anbi12i 457 |
. . . . . . 7
⊢
((∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ ((∃𝑦𝜑 → 𝑥 = 𝑧) ∧ (∃𝑥𝜑 → 𝑦 = 𝑤))) |
34 | 33 | 2albii 1464 |
. . . . . 6
⊢
(∀𝑥∀𝑦(∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥(𝜑 → 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((∃𝑦𝜑 → 𝑥 = 𝑧) ∧ (∃𝑥𝜑 → 𝑦 = 𝑤))) |
35 | | hbe1 1488 |
. . . . . . . 8
⊢
(∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) |
36 | | ax-17 1519 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧) |
37 | 35, 36 | hbim 1538 |
. . . . . . 7
⊢
((∃𝑦𝜑 → 𝑥 = 𝑧) → ∀𝑦(∃𝑦𝜑 → 𝑥 = 𝑧)) |
38 | | hbe1 1488 |
. . . . . . . 8
⊢
(∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
39 | | ax-17 1519 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ∀𝑥 𝑦 = 𝑤) |
40 | 38, 39 | hbim 1538 |
. . . . . . 7
⊢
((∃𝑥𝜑 → 𝑦 = 𝑤) → ∀𝑥(∃𝑥𝜑 → 𝑦 = 𝑤)) |
41 | 37, 40 | aaanh 1579 |
. . . . . 6
⊢
(∀𝑥∀𝑦((∃𝑦𝜑 → 𝑥 = 𝑧) ∧ (∃𝑥𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
42 | 30, 34, 41 | 3bitri 205 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
43 | 42 | 2exbii 1599 |
. . . 4
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
44 | | eeanv 1925 |
. . . 4
⊢
(∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) ↔ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
45 | 43, 44 | bitr2i 184 |
. . 3
⊢
((∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
46 | 10, 45 | anbi12i 457 |
. 2
⊢
(((∃𝑥∃𝑦𝜑 ∧ ∃𝑦∃𝑥𝜑) ∧ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
47 | 5, 6, 46 | 3bitri 205 |
1
⊢
((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |