ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4antlr GIF version

Theorem ad4antlr 487
Description: Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad4antlr (((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓)

Proof of Theorem ad4antlr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21ad3antlr 485 . 2 ((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓)
32adantr 274 1 (((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  ad5antlr  489  ctm  7074  suplocexprlemub  7664  suplocexprlemlub  7665  maxabslemval  11150  xrmaxleim  11185  xrmaxiflemval  11191  fsumconst  11395
  Copyright terms: Public domain W3C validator