ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm GIF version

Theorem ctm 7168
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ctm
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5538 . . . . . . . . . . 11 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of 5500 . . . . . . . . . . 11 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
31, 2mp1i 10 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ( I ↾ 𝐴):𝐴𝐴)
4 fconst6g 5452 . . . . . . . . . . 11 (𝑥𝐴 → (1o × {𝑥}):1o𝐴)
54adantr 276 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (1o × {𝑥}):1o𝐴)
63, 5casef 7147 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴)
7 ffun 5406 . . . . . . . . 9 (case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴 → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
86, 7syl 14 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
9 vex 2763 . . . . . . . . 9 𝑓 ∈ V
109a1i 9 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓 ∈ V)
11 cofunexg 6161 . . . . . . . 8 ((Fun case(( I ↾ 𝐴), (1o × {𝑥})) ∧ 𝑓 ∈ V) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
128, 10, 11syl2anc 411 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
13 fof 5476 . . . . . . . . . 10 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓:ω⟶(𝐴 ⊔ 1o))
1413adantl 277 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓:ω⟶(𝐴 ⊔ 1o))
15 fco 5419 . . . . . . . . 9 ((case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴𝑓:ω⟶(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
166, 14, 15syl2anc 411 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
17 simplr 528 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
18 djulcl 7110 . . . . . . . . . . . 12 (𝑦𝐴 → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
1918adantl 277 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
20 foelrn 5795 . . . . . . . . . . 11 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ (inl‘𝑦) ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
2117, 19, 20syl2anc 411 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
22 fofn 5478 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓 Fn ω)
2322ad4antlr 495 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑓 Fn ω)
24 simplr 528 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑧 ∈ ω)
25 fvco2 5626 . . . . . . . . . . . . . . 15 ((𝑓 Fn ω ∧ 𝑧 ∈ ω) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
2623, 24, 25syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
27 simpr 110 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (inl‘𝑦) = (𝑓𝑧))
2827fveq2d 5558 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
29 fnresi 5371 . . . . . . . . . . . . . . . 16 ( I ↾ 𝐴) Fn 𝐴
3029a1i 9 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ( I ↾ 𝐴) Fn 𝐴)
31 vex 2763 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
3231fconst6 5453 . . . . . . . . . . . . . . . 16 (1o × {𝑥}):1o⟶V
33 ffun 5406 . . . . . . . . . . . . . . . 16 ((1o × {𝑥}):1o⟶V → Fun (1o × {𝑥}))
3432, 33mp1i 10 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → Fun (1o × {𝑥}))
35 simpllr 534 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦𝐴)
3630, 34, 35caseinl 7150 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (( I ↾ 𝐴)‘𝑦))
3726, 28, 363eqtr2d 2232 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (( I ↾ 𝐴)‘𝑦))
38 fvresi 5751 . . . . . . . . . . . . . 14 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
3935, 38syl 14 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
4037, 39eqtr2d 2227 . . . . . . . . . . . 12 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4140ex 115 . . . . . . . . . . 11 ((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) → ((inl‘𝑦) = (𝑓𝑧) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4241reximdva 2596 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4321, 42mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4443ralrimiva 2567 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
45 dffo3 5705 . . . . . . . 8 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 ↔ ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴 ∧ ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4616, 44, 45sylanbrc 417 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴)
47 foeq1 5472 . . . . . . . 8 (𝑔 = (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) → (𝑔:ω–onto𝐴 ↔ (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴))
4847spcegv 2848 . . . . . . 7 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
4912, 46, 48sylc 62 . . . . . 6 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto𝐴)
5049ex 115 . . . . 5 (𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5150exlimiv 1609 . . . 4 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5251exlimdv 1830 . . 3 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
53 foeq1 5472 . . . 4 (𝑓 = 𝑔 → (𝑓:ω–onto𝐴𝑔:ω–onto𝐴))
5453cbvexv 1930 . . 3 (∃𝑓 𝑓:ω–onto𝐴 ↔ ∃𝑔 𝑔:ω–onto𝐴)
5552, 54imbitrrdi 162 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑓 𝑓:ω–onto𝐴))
56 ctmlemr 7167 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
5755, 56impbid 129 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  {csn 3618   I cid 4319  ωcom 4622   × cxp 4657  cres 4661  ccom 4663  Fun wfun 5248   Fn wfn 5249  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  ctssdc  7172  enumct  7174  omct  7176  nninfct  12178  unbendc  12611  pw1nct  15493  nnnninfen  15511
  Copyright terms: Public domain W3C validator