ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm GIF version

Theorem ctm 7272
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ctm
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5610 . . . . . . . . . . 11 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of 5571 . . . . . . . . . . 11 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
31, 2mp1i 10 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ( I ↾ 𝐴):𝐴𝐴)
4 fconst6g 5523 . . . . . . . . . . 11 (𝑥𝐴 → (1o × {𝑥}):1o𝐴)
54adantr 276 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (1o × {𝑥}):1o𝐴)
63, 5casef 7251 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴)
7 ffun 5475 . . . . . . . . 9 (case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴 → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
86, 7syl 14 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
9 vex 2802 . . . . . . . . 9 𝑓 ∈ V
109a1i 9 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓 ∈ V)
11 cofunexg 6252 . . . . . . . 8 ((Fun case(( I ↾ 𝐴), (1o × {𝑥})) ∧ 𝑓 ∈ V) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
128, 10, 11syl2anc 411 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
13 fof 5547 . . . . . . . . . 10 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓:ω⟶(𝐴 ⊔ 1o))
1413adantl 277 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓:ω⟶(𝐴 ⊔ 1o))
15 fco 5488 . . . . . . . . 9 ((case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴𝑓:ω⟶(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
166, 14, 15syl2anc 411 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
17 simplr 528 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
18 djulcl 7214 . . . . . . . . . . . 12 (𝑦𝐴 → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
1918adantl 277 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
20 foelrn 5875 . . . . . . . . . . 11 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ (inl‘𝑦) ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
2117, 19, 20syl2anc 411 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
22 fofn 5549 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓 Fn ω)
2322ad4antlr 495 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑓 Fn ω)
24 simplr 528 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑧 ∈ ω)
25 fvco2 5702 . . . . . . . . . . . . . . 15 ((𝑓 Fn ω ∧ 𝑧 ∈ ω) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
2623, 24, 25syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
27 simpr 110 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (inl‘𝑦) = (𝑓𝑧))
2827fveq2d 5630 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
29 fnresi 5440 . . . . . . . . . . . . . . . 16 ( I ↾ 𝐴) Fn 𝐴
3029a1i 9 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ( I ↾ 𝐴) Fn 𝐴)
31 vex 2802 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
3231fconst6 5524 . . . . . . . . . . . . . . . 16 (1o × {𝑥}):1o⟶V
33 ffun 5475 . . . . . . . . . . . . . . . 16 ((1o × {𝑥}):1o⟶V → Fun (1o × {𝑥}))
3432, 33mp1i 10 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → Fun (1o × {𝑥}))
35 simpllr 534 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦𝐴)
3630, 34, 35caseinl 7254 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (( I ↾ 𝐴)‘𝑦))
3726, 28, 363eqtr2d 2268 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (( I ↾ 𝐴)‘𝑦))
38 fvresi 5831 . . . . . . . . . . . . . 14 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
3935, 38syl 14 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
4037, 39eqtr2d 2263 . . . . . . . . . . . 12 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4140ex 115 . . . . . . . . . . 11 ((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) → ((inl‘𝑦) = (𝑓𝑧) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4241reximdva 2632 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4321, 42mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4443ralrimiva 2603 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
45 dffo3 5781 . . . . . . . 8 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 ↔ ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴 ∧ ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4616, 44, 45sylanbrc 417 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴)
47 foeq1 5543 . . . . . . . 8 (𝑔 = (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) → (𝑔:ω–onto𝐴 ↔ (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴))
4847spcegv 2891 . . . . . . 7 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
4912, 46, 48sylc 62 . . . . . 6 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto𝐴)
5049ex 115 . . . . 5 (𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5150exlimiv 1644 . . . 4 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5251exlimdv 1865 . . 3 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
53 foeq1 5543 . . . 4 (𝑓 = 𝑔 → (𝑓:ω–onto𝐴𝑔:ω–onto𝐴))
5453cbvexv 1965 . . 3 (∃𝑓 𝑓:ω–onto𝐴 ↔ ∃𝑔 𝑔:ω–onto𝐴)
5552, 54imbitrrdi 162 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑓 𝑓:ω–onto𝐴))
56 ctmlemr 7271 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
5755, 56impbid 129 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  {csn 3666   I cid 4378  ωcom 4681   × cxp 4716  cres 4720  ccom 4722  Fun wfun 5311   Fn wfn 5312  wf 5313  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  1oc1o 6553  cdju 7200  inlcinl 7208  casecdjucase 7246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247
This theorem is referenced by:  ctssdc  7276  enumct  7278  omct  7280  nninfct  12557  unbendc  13020  pw1nct  16328  nnnninfen  16346
  Copyright terms: Public domain W3C validator