ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctm GIF version

Theorem ctm 7175
Description: Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
ctm (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ctm
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5542 . . . . . . . . . . 11 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of 5504 . . . . . . . . . . 11 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴𝐴)
31, 2mp1i 10 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ( I ↾ 𝐴):𝐴𝐴)
4 fconst6g 5456 . . . . . . . . . . 11 (𝑥𝐴 → (1o × {𝑥}):1o𝐴)
54adantr 276 . . . . . . . . . 10 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (1o × {𝑥}):1o𝐴)
63, 5casef 7154 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴)
7 ffun 5410 . . . . . . . . 9 (case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴 → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
86, 7syl 14 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → Fun case(( I ↾ 𝐴), (1o × {𝑥})))
9 vex 2766 . . . . . . . . 9 𝑓 ∈ V
109a1i 9 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓 ∈ V)
11 cofunexg 6166 . . . . . . . 8 ((Fun case(( I ↾ 𝐴), (1o × {𝑥})) ∧ 𝑓 ∈ V) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
128, 10, 11syl2anc 411 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V)
13 fof 5480 . . . . . . . . . 10 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓:ω⟶(𝐴 ⊔ 1o))
1413adantl 277 . . . . . . . . 9 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓:ω⟶(𝐴 ⊔ 1o))
15 fco 5423 . . . . . . . . 9 ((case(( I ↾ 𝐴), (1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴𝑓:ω⟶(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
166, 14, 15syl2anc 411 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴)
17 simplr 528 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
18 djulcl 7117 . . . . . . . . . . . 12 (𝑦𝐴 → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
1918adantl 277 . . . . . . . . . . 11 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (inl‘𝑦) ∈ (𝐴 ⊔ 1o))
20 foelrn 5799 . . . . . . . . . . 11 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ (inl‘𝑦) ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
2117, 19, 20syl2anc 411 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧))
22 fofn 5482 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓 Fn ω)
2322ad4antlr 495 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑓 Fn ω)
24 simplr 528 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑧 ∈ ω)
25 fvco2 5630 . . . . . . . . . . . . . . 15 ((𝑓 Fn ω ∧ 𝑧 ∈ ω) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
2623, 24, 25syl2anc 411 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
27 simpr 110 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (inl‘𝑦) = (𝑓𝑧))
2827fveq2d 5562 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓𝑧)))
29 fnresi 5375 . . . . . . . . . . . . . . . 16 ( I ↾ 𝐴) Fn 𝐴
3029a1i 9 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ( I ↾ 𝐴) Fn 𝐴)
31 vex 2766 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
3231fconst6 5457 . . . . . . . . . . . . . . . 16 (1o × {𝑥}):1o⟶V
33 ffun 5410 . . . . . . . . . . . . . . . 16 ((1o × {𝑥}):1o⟶V → Fun (1o × {𝑥}))
3432, 33mp1i 10 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → Fun (1o × {𝑥}))
35 simpllr 534 . . . . . . . . . . . . . . 15 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦𝐴)
3630, 34, 35caseinl 7157 . . . . . . . . . . . . . 14 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (( I ↾ 𝐴)‘𝑦))
3726, 28, 363eqtr2d 2235 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (( I ↾ 𝐴)‘𝑦))
38 fvresi 5755 . . . . . . . . . . . . . 14 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
3935, 38syl 14 . . . . . . . . . . . . 13 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
4037, 39eqtr2d 2230 . . . . . . . . . . . 12 (((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓𝑧)) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4140ex 115 . . . . . . . . . . 11 ((((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) ∧ 𝑧 ∈ ω) → ((inl‘𝑦) = (𝑓𝑧) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4241reximdva 2599 . . . . . . . . . 10 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → (∃𝑧 ∈ ω (inl‘𝑦) = (𝑓𝑧) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4321, 42mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦𝐴) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
4443ralrimiva 2570 . . . . . . . 8 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))
45 dffo3 5709 . . . . . . . 8 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 ↔ ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴 ∧ ∀𝑦𝐴𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)))
4616, 44, 45sylanbrc 417 . . . . . . 7 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴)
47 foeq1 5476 . . . . . . . 8 (𝑔 = (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) → (𝑔:ω–onto𝐴 ↔ (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴))
4847spcegv 2852 . . . . . . 7 ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto𝐴 → ∃𝑔 𝑔:ω–onto𝐴))
4912, 46, 48sylc 62 . . . . . 6 ((𝑥𝐴𝑓:ω–onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:ω–onto𝐴)
5049ex 115 . . . . 5 (𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5150exlimiv 1612 . . . 4 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
5251exlimdv 1833 . . 3 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto𝐴))
53 foeq1 5476 . . . 4 (𝑓 = 𝑔 → (𝑓:ω–onto𝐴𝑔:ω–onto𝐴))
5453cbvexv 1933 . . 3 (∃𝑓 𝑓:ω–onto𝐴 ↔ ∃𝑔 𝑔:ω–onto𝐴)
5552, 54imbitrrdi 162 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑓 𝑓:ω–onto𝐴))
56 ctmlemr 7174 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
5755, 56impbid 129 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  {csn 3622   I cid 4323  ωcom 4626   × cxp 4661  cres 4665  ccom 4667  Fun wfun 5252   Fn wfn 5253  wf 5254  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  casecdjucase 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150
This theorem is referenced by:  ctssdc  7179  enumct  7181  omct  7183  nninfct  12208  unbendc  12671  pw1nct  15647  nnnninfen  15665
  Copyright terms: Public domain W3C validator