| Step | Hyp | Ref
| Expression |
| 1 | | f1oi 5542 |
. . . . . . . . . . 11
⊢ ( I
↾ 𝐴):𝐴–1-1-onto→𝐴 |
| 2 | | f1of 5504 |
. . . . . . . . . . 11
⊢ (( I
↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴⟶𝐴) |
| 3 | 1, 2 | mp1i 10 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → ( I ↾
𝐴):𝐴⟶𝐴) |
| 4 | | fconst6g 5456 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (1o × {𝑥}):1o⟶𝐴) |
| 5 | 4 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) →
(1o × {𝑥}):1o⟶𝐴) |
| 6 | 3, 5 | casef 7154 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → case(( I
↾ 𝐴), (1o
× {𝑥})):(𝐴 ⊔
1o)⟶𝐴) |
| 7 | | ffun 5410 |
. . . . . . . . 9
⊢ (case(( I
↾ 𝐴), (1o
× {𝑥})):(𝐴 ⊔
1o)⟶𝐴
→ Fun case(( I ↾ 𝐴), (1o × {𝑥}))) |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → Fun case((
I ↾ 𝐴),
(1o × {𝑥}))) |
| 9 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
| 10 | 9 | a1i 9 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓 ∈ V) |
| 11 | | cofunexg 6166 |
. . . . . . . 8
⊢ ((Fun
case(( I ↾ 𝐴),
(1o × {𝑥})) ∧ 𝑓 ∈ V) → (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) ∈ V) |
| 12 | 8, 10, 11 | syl2anc 411 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I
↾ 𝐴), (1o
× {𝑥})) ∘ 𝑓) ∈ V) |
| 13 | | fof 5480 |
. . . . . . . . . 10
⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓:ω⟶(𝐴 ⊔
1o)) |
| 14 | 13 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → 𝑓:ω⟶(𝐴 ⊔
1o)) |
| 15 | | fco 5423 |
. . . . . . . . 9
⊢ ((case((
I ↾ 𝐴),
(1o × {𝑥})):(𝐴 ⊔ 1o)⟶𝐴 ∧ 𝑓:ω⟶(𝐴 ⊔ 1o)) → (case(( I
↾ 𝐴), (1o
× {𝑥})) ∘ 𝑓):ω⟶𝐴) |
| 16 | 6, 14, 15 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I
↾ 𝐴), (1o
× {𝑥})) ∘ 𝑓):ω⟶𝐴) |
| 17 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) → 𝑓:ω–onto→(𝐴 ⊔ 1o)) |
| 18 | | djulcl 7117 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (inl‘𝑦) ∈ (𝐴 ⊔ 1o)) |
| 19 | 18 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) → (inl‘𝑦) ∈ (𝐴 ⊔ 1o)) |
| 20 | | foelrn 5799 |
. . . . . . . . . . 11
⊢ ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧
(inl‘𝑦) ∈ (𝐴 ⊔ 1o)) →
∃𝑧 ∈ ω
(inl‘𝑦) = (𝑓‘𝑧)) |
| 21 | 17, 19, 20 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ ω (inl‘𝑦) = (𝑓‘𝑧)) |
| 22 | | fofn 5482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝑓 Fn ω) |
| 23 | 22 | ad4antlr 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → 𝑓 Fn ω) |
| 24 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → 𝑧 ∈ ω) |
| 25 | | fvco2 5630 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ω ∧ 𝑧 ∈ ω) → ((case((
I ↾ 𝐴),
(1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓‘𝑧))) |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓‘𝑧))) |
| 27 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → (inl‘𝑦) = (𝑓‘𝑧)) |
| 28 | 27 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (case(( I ↾ 𝐴), (1o × {𝑥}))‘(𝑓‘𝑧))) |
| 29 | | fnresi 5375 |
. . . . . . . . . . . . . . . 16
⊢ ( I
↾ 𝐴) Fn 𝐴 |
| 30 | 29 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → ( I ↾ 𝐴) Fn 𝐴) |
| 31 | | vex 2766 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 32 | 31 | fconst6 5457 |
. . . . . . . . . . . . . . . 16
⊢
(1o × {𝑥}):1o⟶V |
| 33 | | ffun 5410 |
. . . . . . . . . . . . . . . 16
⊢
((1o × {𝑥}):1o⟶V → Fun
(1o × {𝑥})) |
| 34 | 32, 33 | mp1i 10 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → Fun (1o × {𝑥})) |
| 35 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → 𝑦 ∈ 𝐴) |
| 36 | 30, 34, 35 | caseinl 7157 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → (case(( I ↾ 𝐴), (1o × {𝑥}))‘(inl‘𝑦)) = (( I ↾ 𝐴)‘𝑦)) |
| 37 | 26, 28, 36 | 3eqtr2d 2235 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧) = (( I ↾ 𝐴)‘𝑦)) |
| 38 | | fvresi 5755 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 39 | 35, 38 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 40 | 37, 39 | eqtr2d 2230 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) ∧ (inl‘𝑦) = (𝑓‘𝑧)) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)) |
| 41 | 40 | ex 115 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ω) → ((inl‘𝑦) = (𝑓‘𝑧) → 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))) |
| 42 | 41 | reximdva 2599 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ ω (inl‘𝑦) = (𝑓‘𝑧) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))) |
| 43 | 21, 42 | mpd 13 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)) |
| 44 | 43 | ralrimiva 2570 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) →
∀𝑦 ∈ 𝐴 ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧)) |
| 45 | | dffo3 5709 |
. . . . . . . 8
⊢ ((case((
I ↾ 𝐴),
(1o × {𝑥})) ∘ 𝑓):ω–onto→𝐴 ↔ ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω⟶𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ ω 𝑦 = ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓)‘𝑧))) |
| 46 | 16, 44, 45 | sylanbrc 417 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) → (case(( I
↾ 𝐴), (1o
× {𝑥})) ∘ 𝑓):ω–onto→𝐴) |
| 47 | | foeq1 5476 |
. . . . . . . 8
⊢ (𝑔 = (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓) → (𝑔:ω–onto→𝐴 ↔ (case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto→𝐴)) |
| 48 | 47 | spcegv 2852 |
. . . . . . 7
⊢ ((case((
I ↾ 𝐴),
(1o × {𝑥})) ∘ 𝑓) ∈ V → ((case(( I ↾ 𝐴), (1o × {𝑥})) ∘ 𝑓):ω–onto→𝐴 → ∃𝑔 𝑔:ω–onto→𝐴)) |
| 49 | 12, 46, 48 | sylc 62 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→(𝐴 ⊔ 1o)) →
∃𝑔 𝑔:ω–onto→𝐴) |
| 50 | 49 | ex 115 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→𝐴)) |
| 51 | 50 | exlimiv 1612 |
. . . 4
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→𝐴)) |
| 52 | 51 | exlimdv 1833 |
. . 3
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→𝐴)) |
| 53 | | foeq1 5476 |
. . . 4
⊢ (𝑓 = 𝑔 → (𝑓:ω–onto→𝐴 ↔ 𝑔:ω–onto→𝐴)) |
| 54 | 53 | cbvexv 1933 |
. . 3
⊢
(∃𝑓 𝑓:ω–onto→𝐴 ↔ ∃𝑔 𝑔:ω–onto→𝐴) |
| 55 | 52, 54 | imbitrrdi 162 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑓 𝑓:ω–onto→𝐴)) |
| 56 | | ctmlemr 7174 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) |
| 57 | 55, 56 | impbid 129 |
1
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝐴)) |