ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxleim GIF version

Theorem xrmaxleim 11220
Description: Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
Assertion
Ref Expression
xrmaxleim ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))

Proof of Theorem xrmaxleim
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9768 . . . 4 ((𝑓 ∈ ℝ*𝑔 ∈ ℝ*) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ (𝑓 ∈ ℝ*𝑔 ∈ ℝ*)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 simplr 528 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
4 prid2g 3694 . . . 4 (𝐵 ∈ ℝ*𝐵 ∈ {𝐴, 𝐵})
53, 4syl 14 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ {𝐴, 𝐵})
6 simpllr 534 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴𝐵)
7 xrlenlt 7996 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
87ad3antrrr 492 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
96, 8mpbid 147 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝐵 < 𝐴)
10 breq2 4002 . . . . . . 7 (𝑦 = 𝐴 → (𝐵 < 𝑦𝐵 < 𝐴))
1110notbid 667 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐴))
1211adantl 277 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐴))
139, 12mpbird 167 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝐵 < 𝑦)
14 xrltnr 9750 . . . . . 6 (𝐵 ∈ ℝ* → ¬ 𝐵 < 𝐵)
1514ad4antlr 495 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝐵 < 𝐵)
16 breq2 4002 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 < 𝑦𝐵 < 𝐵))
1716notbid 667 . . . . . 6 (𝑦 = 𝐵 → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐵))
1817adantl 277 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐵))
1915, 18mpbird 167 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝐵 < 𝑦)
20 elpri 3612 . . . . 5 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
2120adantl 277 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
2213, 19, 21mpjaodan 798 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝐵 < 𝑦)
232, 3, 5, 22supmaxti 6993 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
2423ex 115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2146  {cpr 3590   class class class wbr 3998  supcsup 6971  *cxr 7965   < clt 7966  cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-apti 7901
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-iota 5170  df-riota 5821  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  xrmaxltsup  11234  xrmaxadd  11237  xrmineqinf  11245
  Copyright terms: Public domain W3C validator