ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemval GIF version

Theorem maxabslemval 11352
Description: Lemma for maxabs 11353. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxabslemval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧

Proof of Theorem maxabslemval
StepHypRef Expression
1 readdcl 7998 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2 simpl 109 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
32recnd 8048 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
4 simpr 110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
54recnd 8048 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
63, 5subcld 8330 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℂ)
76abscld 11325 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) ∈ ℝ)
81, 7readdcld 8049 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
98rehalfcld 9229 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
10 vex 2763 . . . . 5 𝑥 ∈ V
1110elpr 3639 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
12 maxabsle 11348 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
132, 9, 12lensymd 8141 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴)
14 breq2 4033 . . . . . . 7 (𝑥 = 𝐴 → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴))
1514notbid 668 . . . . . 6 (𝑥 = 𝐴 → (¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴))
1613, 15syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 = 𝐴 → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
17 maxabsle 11348 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2))
1817ancoms 268 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2))
195, 3addcomd 8170 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
205, 3abssubd 11337 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐵𝐴)) = (abs‘(𝐴𝐵)))
2119, 20oveq12d 5936 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) = ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))))
2221oveq1d 5933 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2318, 22breqtrd 4055 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
244, 9, 23lensymd 8141 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵)
25 breq2 4033 . . . . . . 7 (𝑥 = 𝐵 → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵))
2625notbid 668 . . . . . 6 (𝑥 = 𝐵 → (¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵))
2724, 26syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 = 𝐵 → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
2816, 27jaod 718 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
2911, 28biimtrid 152 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ {𝐴, 𝐵} → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
3029ralrimiv 2566 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥)
31 prid1g 3722 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ {𝐴, 𝐵})
3231ad4antr 494 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵})
33 breq2 4033 . . . . . . 7 (𝑧 = 𝐴 → (𝑥 < 𝑧𝑥 < 𝐴))
3433rspcev 2864 . . . . . 6 ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3532, 34sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
36 prid2g 3723 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐴, 𝐵})
3736ad4antlr 495 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵})
38 breq2 4033 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 < 𝑧𝑥 < 𝐵))
3938rspcev 2864 . . . . . 6 ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4037, 39sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
412ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℝ)
424ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℝ)
43 simplr 528 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝑥 ∈ ℝ)
44 simpr 110 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
4541, 42, 43, 44maxabslemlub 11351 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝑥 < 𝐴𝑥 < 𝐵))
4635, 40, 45mpjaodan 799 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4746ex 115 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
4847ralrimiva 2567 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
499, 30, 483jca 1179 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {cpr 3619   class class class wbr 4029  cfv 5254  (class class class)co 5918  cr 7871   + caddc 7875   < clt 8054  cle 8055  cmin 8190   / cdiv 8691  2c2 9033  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  maxabs  11353  maxleast  11357
  Copyright terms: Public domain W3C validator