ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemval GIF version

Theorem maxabslemval 10536
Description: Lemma for maxabs 10537. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxabslemval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧

Proof of Theorem maxabslemval
StepHypRef Expression
1 readdcl 7412 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
2 simpl 107 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
32recnd 7460 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
4 simpr 108 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
54recnd 7460 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
63, 5subcld 7737 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℂ)
76abscld 10509 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴𝐵)) ∈ ℝ)
81, 7readdcld 7461 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
98rehalfcld 8595 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
10 vex 2618 . . . . 5 𝑥 ∈ V
1110elpr 3452 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
12 maxabsle 10532 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
132, 9, 12lensymd 7549 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴)
14 breq2 3824 . . . . . . 7 (𝑥 = 𝐴 → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴))
1514notbid 625 . . . . . 6 (𝑥 = 𝐴 → (¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐴))
1613, 15syl5ibrcom 155 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 = 𝐴 → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
17 maxabsle 10532 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2))
1817ancoms 264 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2))
195, 3addcomd 7577 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
205, 3abssubd 10521 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐵𝐴)) = (abs‘(𝐴𝐵)))
2119, 20oveq12d 5631 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) = ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))))
2221oveq1d 5628 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐵 + 𝐴) + (abs‘(𝐵𝐴))) / 2) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2318, 22breqtrd 3844 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
244, 9, 23lensymd 7549 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵)
25 breq2 3824 . . . . . . 7 (𝑥 = 𝐵 → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵))
2625notbid 625 . . . . . 6 (𝑥 = 𝐵 → (¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐵))
2724, 26syl5ibrcom 155 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 = 𝐵 → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
2816, 27jaod 670 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
2911, 28syl5bi 150 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ {𝐴, 𝐵} → ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥))
3029ralrimiv 2441 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥)
31 prid1g 3529 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ {𝐴, 𝐵})
3231ad4antr 478 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵})
33 breq2 3824 . . . . . . 7 (𝑧 = 𝐴 → (𝑥 < 𝑧𝑥 < 𝐴))
3433rspcev 2715 . . . . . 6 ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3532, 34sylancom 411 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
36 prid2g 3530 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐴, 𝐵})
3736ad4antlr 479 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵})
38 breq2 3824 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 < 𝑧𝑥 < 𝐵))
3938rspcev 2715 . . . . . 6 ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4037, 39sylancom 411 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
412ad2antrr 472 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℝ)
424ad2antrr 472 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℝ)
43 simplr 497 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝑥 ∈ ℝ)
44 simpr 108 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
4541, 42, 43, 44maxabslemlub 10535 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝑥 < 𝐴𝑥 < 𝐵))
4635, 40, 45mpjaodan 745 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4746ex 113 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
4847ralrimiva 2442 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
499, 30, 483jca 1121 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  w3a 922   = wceq 1287  wcel 1436  wral 2355  wrex 2356  {cpr 3432   class class class wbr 3820  cfv 4981  (class class class)co 5613  cr 7293   + caddc 7297   < clt 7466  cle 7467  cmin 7597   / cdiv 8078  2c2 8407  abscabs 10325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-rp 9067  df-iseq 9780  df-iexp 9853  df-cj 10171  df-re 10172  df-im 10173  df-rsqrt 10326  df-abs 10327
This theorem is referenced by:  maxabs  10537  maxleast  10541
  Copyright terms: Public domain W3C validator