ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst GIF version

Theorem fsumconst 11254
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11155 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
2 fveq2 5428 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq1d 5796 . . 3 (𝑤 = ∅ → ((♯‘𝑤) · 𝐵) = ((♯‘∅) · 𝐵))
41, 3eqeq12d 2155 . 2 (𝑤 = ∅ → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵)))
5 sumeq1 11155 . . 3 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
6 fveq2 5428 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq1d 5796 . . 3 (𝑤 = 𝑦 → ((♯‘𝑤) · 𝐵) = ((♯‘𝑦) · 𝐵))
85, 7eqeq12d 2155 . 2 (𝑤 = 𝑦 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)))
9 sumeq1 11155 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5428 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq1d 5796 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤) · 𝐵) = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
129, 11eqeq12d 2155 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
13 sumeq1 11155 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
14 fveq2 5428 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq1d 5796 . . 3 (𝑤 = 𝐴 → ((♯‘𝑤) · 𝐵) = ((♯‘𝐴) · 𝐵))
1613, 15eqeq12d 2155 . 2 (𝑤 = 𝐴 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
17 sum0 11188 . . 3 Σ𝑘 ∈ ∅ 𝐵 = 0
18 hash0 10574 . . . . 5 (♯‘∅) = 0
1918oveq1i 5791 . . . 4 ((♯‘∅) · 𝐵) = (0 · 𝐵)
20 simpr 109 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120mul02d 8177 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
2219, 21syl5eq 2185 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ((♯‘∅) · 𝐵) = 0)
2317, 22eqtr4id 2192 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵))
24 simpr 109 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
25 vex 2692 . . . . . . . 8 𝑧 ∈ V
26 eqidd 2141 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝐵)
2726sumsn 11211 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2825, 27mpan 421 . . . . . . 7 (𝐵 ∈ ℂ → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2928ad4antlr 487 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
3024, 29oveq12d 5799 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
31 simprr 522 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3231eldifbd 3087 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
33 disjsn 3592 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3432, 33sylibr 133 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∩ {𝑧}) = ∅)
35 eqidd 2141 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
36 simplr 520 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 snfig 6715 . . . . . . . . . 10 (𝑧 ∈ V → {𝑧} ∈ Fin)
3837elv 2693 . . . . . . . . 9 {𝑧} ∈ Fin
3938a1i 9 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ Fin)
40 unfidisj 6817 . . . . . . . 8 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑦 ∪ {𝑧}) ∈ Fin)
4136, 39, 34, 40syl3anc 1217 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) ∈ Fin)
42 simp-4r 532 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4334, 35, 41, 42fsumsplit 11207 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
4443adantr 274 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
45 hashcl 10558 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
4645ad3antlr 485 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℕ0)
4746nn0cnd 9055 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℂ)
48 simp-4r 532 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝐵 ∈ ℂ)
4947, 48adddirp1d 7815 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (((♯‘𝑦) + 1) · 𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
5030, 44, 493eqtr4d 2183 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (((♯‘𝑦) + 1) · 𝐵))
5136adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝑦 ∈ Fin)
5238a1i 9 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → {𝑧} ∈ Fin)
5334adantr 274 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
54 hashun 10582 . . . . . . 7 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
5551, 52, 53, 54syl3anc 1217 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
56 hashsng 10575 . . . . . . . 8 (𝑧 ∈ V → (♯‘{𝑧}) = 1)
5756elv 2693 . . . . . . 7 (♯‘{𝑧}) = 1
5857oveq2i 5792 . . . . . 6 ((♯‘𝑦) + (♯‘{𝑧})) = ((♯‘𝑦) + 1)
5955, 58eqtrdi 2189 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6059oveq1d 5796 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → ((♯‘(𝑦 ∪ {𝑧})) · 𝐵) = (((♯‘𝑦) + 1) · 𝐵))
6150, 60eqtr4d 2176 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
6261ex 114 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
63 simpl 108 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
644, 8, 12, 16, 23, 62, 63findcard2sd 6793 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1332  wcel 1481  Vcvv 2689  cdif 3072  cun 3073  cin 3074  wss 3075  c0 3367  {csn 3531  cfv 5130  (class class class)co 5781  Fincfn 6641  cc 7641  0cc0 7643  1c1 7644   + caddc 7646   · cmul 7648  0cn0 9000  chash 10552  Σcsu 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-frec 6295  df-1o 6320  df-oadd 6324  df-er 6436  df-en 6642  df-dom 6643  df-fin 6644  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-fz 9821  df-fzo 9950  df-seqfrec 10249  df-exp 10323  df-ihash 10553  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-clim 11079  df-sumdc 11154
This theorem is referenced by:  fsumdifsnconst  11255  hashiun  11278  hash2iun1dif1  11280  mertenslemi1  11335
  Copyright terms: Public domain W3C validator