ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst GIF version

Theorem fsumconst 11494
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11395 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
2 fveq2 5534 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq1d 5911 . . 3 (𝑤 = ∅ → ((♯‘𝑤) · 𝐵) = ((♯‘∅) · 𝐵))
41, 3eqeq12d 2204 . 2 (𝑤 = ∅ → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵)))
5 sumeq1 11395 . . 3 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
6 fveq2 5534 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq1d 5911 . . 3 (𝑤 = 𝑦 → ((♯‘𝑤) · 𝐵) = ((♯‘𝑦) · 𝐵))
85, 7eqeq12d 2204 . 2 (𝑤 = 𝑦 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)))
9 sumeq1 11395 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5534 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq1d 5911 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤) · 𝐵) = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
129, 11eqeq12d 2204 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
13 sumeq1 11395 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
14 fveq2 5534 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq1d 5911 . . 3 (𝑤 = 𝐴 → ((♯‘𝑤) · 𝐵) = ((♯‘𝐴) · 𝐵))
1613, 15eqeq12d 2204 . 2 (𝑤 = 𝐴 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
17 sum0 11428 . . 3 Σ𝑘 ∈ ∅ 𝐵 = 0
18 hash0 10808 . . . . 5 (♯‘∅) = 0
1918oveq1i 5906 . . . 4 ((♯‘∅) · 𝐵) = (0 · 𝐵)
20 simpr 110 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120mul02d 8379 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
2219, 21eqtrid 2234 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ((♯‘∅) · 𝐵) = 0)
2317, 22eqtr4id 2241 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵))
24 simpr 110 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
25 vex 2755 . . . . . . . 8 𝑧 ∈ V
26 eqidd 2190 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝐵)
2726sumsn 11451 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2825, 27mpan 424 . . . . . . 7 (𝐵 ∈ ℂ → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2928ad4antlr 495 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
3024, 29oveq12d 5914 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
31 simprr 531 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3231eldifbd 3156 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
33 disjsn 3669 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3432, 33sylibr 134 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∩ {𝑧}) = ∅)
35 eqidd 2190 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
36 simplr 528 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 snfig 6840 . . . . . . . . . 10 (𝑧 ∈ V → {𝑧} ∈ Fin)
3837elv 2756 . . . . . . . . 9 {𝑧} ∈ Fin
3938a1i 9 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ Fin)
40 unfidisj 6950 . . . . . . . 8 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑦 ∪ {𝑧}) ∈ Fin)
4136, 39, 34, 40syl3anc 1249 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) ∈ Fin)
42 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4334, 35, 41, 42fsumsplit 11447 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
4443adantr 276 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
45 hashcl 10793 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
4645ad3antlr 493 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℕ0)
4746nn0cnd 9261 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℂ)
48 simp-4r 542 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝐵 ∈ ℂ)
4947, 48adddirp1d 8014 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (((♯‘𝑦) + 1) · 𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
5030, 44, 493eqtr4d 2232 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (((♯‘𝑦) + 1) · 𝐵))
5136adantr 276 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝑦 ∈ Fin)
5238a1i 9 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → {𝑧} ∈ Fin)
5334adantr 276 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
54 hashun 10817 . . . . . . 7 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
5551, 52, 53, 54syl3anc 1249 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
56 hashsng 10810 . . . . . . . 8 (𝑧 ∈ V → (♯‘{𝑧}) = 1)
5756elv 2756 . . . . . . 7 (♯‘{𝑧}) = 1
5857oveq2i 5907 . . . . . 6 ((♯‘𝑦) + (♯‘{𝑧})) = ((♯‘𝑦) + 1)
5955, 58eqtrdi 2238 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6059oveq1d 5911 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → ((♯‘(𝑦 ∪ {𝑧})) · 𝐵) = (((♯‘𝑦) + 1) · 𝐵))
6150, 60eqtr4d 2225 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
6261ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
63 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
644, 8, 12, 16, 23, 62, 63findcard2sd 6920 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  cdif 3141  cun 3142  cin 3143  wss 3144  c0 3437  {csn 3607  cfv 5235  (class class class)co 5896  Fincfn 6766  cc 7839  0cc0 7841  1c1 7842   + caddc 7844   · cmul 7846  0cn0 9206  chash 10787  Σcsu 11393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394
This theorem is referenced by:  fsumdifsnconst  11495  hashiun  11518  hash2iun1dif1  11520  mertenslemi1  11575  sumhashdc  12379
  Copyright terms: Public domain W3C validator