Step | Hyp | Ref
| Expression |
1 | | sumeq1 11318 |
. . 3
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
2 | | fveq2 5496 |
. . . 4
⊢ (𝑤 = ∅ →
(♯‘𝑤) =
(♯‘∅)) |
3 | 2 | oveq1d 5868 |
. . 3
⊢ (𝑤 = ∅ →
((♯‘𝑤) ·
𝐵) =
((♯‘∅) · 𝐵)) |
4 | 1, 3 | eqeq12d 2185 |
. 2
⊢ (𝑤 = ∅ → (Σ𝑘 ∈ 𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵))) |
5 | | sumeq1 11318 |
. . 3
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) |
6 | | fveq2 5496 |
. . . 4
⊢ (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦)) |
7 | 6 | oveq1d 5868 |
. . 3
⊢ (𝑤 = 𝑦 → ((♯‘𝑤) · 𝐵) = ((♯‘𝑦) · 𝐵)) |
8 | 5, 7 | eqeq12d 2185 |
. 2
⊢ (𝑤 = 𝑦 → (Σ𝑘 ∈ 𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵))) |
9 | | sumeq1 11318 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
10 | | fveq2 5496 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧}))) |
11 | 10 | oveq1d 5868 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤) · 𝐵) = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)) |
12 | 9, 11 | eqeq12d 2185 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (Σ𝑘 ∈ 𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))) |
13 | | sumeq1 11318 |
. . 3
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
14 | | fveq2 5496 |
. . . 4
⊢ (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴)) |
15 | 14 | oveq1d 5868 |
. . 3
⊢ (𝑤 = 𝐴 → ((♯‘𝑤) · 𝐵) = ((♯‘𝐴) · 𝐵)) |
16 | 13, 15 | eqeq12d 2185 |
. 2
⊢ (𝑤 = 𝐴 → (Σ𝑘 ∈ 𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵))) |
17 | | sum0 11351 |
. . 3
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
18 | | hash0 10731 |
. . . . 5
⊢
(♯‘∅) = 0 |
19 | 18 | oveq1i 5863 |
. . . 4
⊢
((♯‘∅) · 𝐵) = (0 · 𝐵) |
20 | | simpr 109 |
. . . . 5
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈
ℂ) |
21 | 20 | mul02d 8311 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0
· 𝐵) =
0) |
22 | 19, 21 | eqtrid 2215 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) →
((♯‘∅) · 𝐵) = 0) |
23 | 17, 22 | eqtr4id 2222 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) →
Σ𝑘 ∈ ∅
𝐵 =
((♯‘∅) · 𝐵)) |
24 | | simpr 109 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) |
25 | | vex 2733 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
26 | | eqidd 2171 |
. . . . . . . . 9
⊢ (𝑘 = 𝑧 → 𝐵 = 𝐵) |
27 | 26 | sumsn 11374 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ ℂ) →
Σ𝑘 ∈ {𝑧}𝐵 = 𝐵) |
28 | 25, 27 | mpan 422 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ →
Σ𝑘 ∈ {𝑧}𝐵 = 𝐵) |
29 | 28 | ad4antlr 492 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵) |
30 | 24, 29 | oveq12d 5871 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵)) |
31 | | simprr 527 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
32 | 31 | eldifbd 3133 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
33 | | disjsn 3645 |
. . . . . . . 8
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
34 | 32, 33 | sylibr 133 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑦 ∩ {𝑧}) = ∅) |
35 | | eqidd 2171 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
36 | | simplr 525 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
37 | | snfig 6792 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → {𝑧} ∈ Fin) |
38 | 37 | elv 2734 |
. . . . . . . . 9
⊢ {𝑧} ∈ Fin |
39 | 38 | a1i 9 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → {𝑧} ∈ Fin) |
40 | | unfidisj 6899 |
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑦 ∪ {𝑧}) ∈ Fin) |
41 | 36, 39, 34, 40 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑦 ∪ {𝑧}) ∈ Fin) |
42 | | simp-4r 537 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ) |
43 | 34, 35, 41, 42 | fsumsplit 11370 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵)) |
44 | 43 | adantr 274 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵)) |
45 | | hashcl 10715 |
. . . . . . . 8
⊢ (𝑦 ∈ Fin →
(♯‘𝑦) ∈
ℕ0) |
46 | 45 | ad3antlr 490 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈
ℕ0) |
47 | 46 | nn0cnd 9190 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℂ) |
48 | | simp-4r 537 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝐵 ∈ ℂ) |
49 | 47, 48 | adddirp1d 7946 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (((♯‘𝑦) + 1) · 𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵)) |
50 | 30, 44, 49 | 3eqtr4d 2213 |
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (((♯‘𝑦) + 1) · 𝐵)) |
51 | 36 | adantr 274 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝑦 ∈ Fin) |
52 | 38 | a1i 9 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → {𝑧} ∈ Fin) |
53 | 34 | adantr 274 |
. . . . . . 7
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
54 | | hashun 10740 |
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧}))) |
55 | 51, 52, 53, 54 | syl3anc 1233 |
. . . . . 6
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧}))) |
56 | | hashsng 10733 |
. . . . . . . 8
⊢ (𝑧 ∈ V →
(♯‘{𝑧}) =
1) |
57 | 56 | elv 2734 |
. . . . . . 7
⊢
(♯‘{𝑧})
= 1 |
58 | 57 | oveq2i 5864 |
. . . . . 6
⊢
((♯‘𝑦) +
(♯‘{𝑧})) =
((♯‘𝑦) +
1) |
59 | 55, 58 | eqtrdi 2219 |
. . . . 5
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)) |
60 | 59 | oveq1d 5868 |
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → ((♯‘(𝑦 ∪ {𝑧})) · 𝐵) = (((♯‘𝑦) + 1) · 𝐵)) |
61 | 50, 60 | eqtr4d 2206 |
. . 3
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ ℂ)
∧ 𝑦 ∈ Fin) ∧
(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)) |
62 | 61 | ex 114 |
. 2
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (Σ𝑘 ∈ 𝑦 𝐵 = ((♯‘𝑦) · 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))) |
63 | | simpl 108 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin) |
64 | 4, 8, 12, 16, 23, 62, 63 | findcard2sd 6870 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) →
Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |