ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumconst GIF version

Theorem fsumconst 11973
Description: The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
fsumconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fsumconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11874 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
2 fveq2 5629 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq1d 6022 . . 3 (𝑤 = ∅ → ((♯‘𝑤) · 𝐵) = ((♯‘∅) · 𝐵))
41, 3eqeq12d 2244 . 2 (𝑤 = ∅ → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵)))
5 sumeq1 11874 . . 3 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
6 fveq2 5629 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq1d 6022 . . 3 (𝑤 = 𝑦 → ((♯‘𝑤) · 𝐵) = ((♯‘𝑦) · 𝐵))
85, 7eqeq12d 2244 . 2 (𝑤 = 𝑦 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)))
9 sumeq1 11874 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5629 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq1d 6022 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((♯‘𝑤) · 𝐵) = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
129, 11eqeq12d 2244 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
13 sumeq1 11874 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
14 fveq2 5629 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq1d 6022 . . 3 (𝑤 = 𝐴 → ((♯‘𝑤) · 𝐵) = ((♯‘𝐴) · 𝐵))
1613, 15eqeq12d 2244 . 2 (𝑤 = 𝐴 → (Σ𝑘𝑤 𝐵 = ((♯‘𝑤) · 𝐵) ↔ Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵)))
17 sum0 11907 . . 3 Σ𝑘 ∈ ∅ 𝐵 = 0
18 hash0 11026 . . . . 5 (♯‘∅) = 0
1918oveq1i 6017 . . . 4 ((♯‘∅) · 𝐵) = (0 · 𝐵)
20 simpr 110 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120mul02d 8546 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
2219, 21eqtrid 2274 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ((♯‘∅) · 𝐵) = 0)
2317, 22eqtr4id 2281 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ ∅ 𝐵 = ((♯‘∅) · 𝐵))
24 simpr 110 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵))
25 vex 2802 . . . . . . . 8 𝑧 ∈ V
26 eqidd 2230 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝐵)
2726sumsn 11930 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2825, 27mpan 424 . . . . . . 7 (𝐵 ∈ ℂ → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
2928ad4antlr 495 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝐵)
3024, 29oveq12d 6025 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
31 simprr 531 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3231eldifbd 3209 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
33 disjsn 3728 . . . . . . . 8 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3432, 33sylibr 134 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∩ {𝑧}) = ∅)
35 eqidd 2230 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
36 simplr 528 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 snfig 6975 . . . . . . . . . 10 (𝑧 ∈ V → {𝑧} ∈ Fin)
3837elv 2803 . . . . . . . . 9 {𝑧} ∈ Fin
3938a1i 9 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ Fin)
40 unfidisj 7092 . . . . . . . 8 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑦 ∪ {𝑧}) ∈ Fin)
4136, 39, 34, 40syl3anc 1271 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∪ {𝑧}) ∈ Fin)
42 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4334, 35, 41, 42fsumsplit 11926 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
4443adantr 276 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
45 hashcl 11011 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
4645ad3antlr 493 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℕ0)
4746nn0cnd 9432 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘𝑦) ∈ ℂ)
48 simp-4r 542 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝐵 ∈ ℂ)
4947, 48adddirp1d 8181 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (((♯‘𝑦) + 1) · 𝐵) = (((♯‘𝑦) · 𝐵) + 𝐵))
5030, 44, 493eqtr4d 2272 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (((♯‘𝑦) + 1) · 𝐵))
5136adantr 276 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → 𝑦 ∈ Fin)
5238a1i 9 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → {𝑧} ∈ Fin)
5334adantr 276 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
54 hashun 11035 . . . . . . 7 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin ∧ (𝑦 ∩ {𝑧}) = ∅) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
5551, 52, 53, 54syl3anc 1271 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + (♯‘{𝑧})))
56 hashsng 11028 . . . . . . . 8 (𝑧 ∈ V → (♯‘{𝑧}) = 1)
5756elv 2803 . . . . . . 7 (♯‘{𝑧}) = 1
5857oveq2i 6018 . . . . . 6 ((♯‘𝑦) + (♯‘{𝑧})) = ((♯‘𝑦) + 1)
5955, 58eqtrdi 2278 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6059oveq1d 6022 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → ((♯‘(𝑦 ∪ {𝑧})) · 𝐵) = (((♯‘𝑦) + 1) · 𝐵))
6150, 60eqtr4d 2265 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵))
6261ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (Σ𝑘𝑦 𝐵 = ((♯‘𝑦) · 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ((♯‘(𝑦 ∪ {𝑧})) · 𝐵)))
63 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
644, 8, 12, 16, 23, 62, 63findcard2sd 7062 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  cin 3196  wss 3197  c0 3491  {csn 3666  cfv 5318  (class class class)co 6007  Fincfn 6895  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012  0cn0 9377  chash 11005  Σcsu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  fsumdifsnconst  11974  hashiun  11997  hash2iun1dif1  11999  mertenslemi1  12054  sumhashdc  12878  0sgm  15667  lgsquadlem1  15764
  Copyright terms: Public domain W3C validator