ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad5antr GIF version

Theorem ad5antr 496
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad5antr ((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem ad5antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21ad4antr 494 . 2 (((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓)
32adantr 276 1 ((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad6antr  498  difinfinf  7210  ctssdclemn0  7219  cauappcvgprlemladdfu  7774  caucvgprlemloc  7795  caucvgprlemladdfu  7797  caucvgprlemlim  7801  caucvgprprlemml  7814  caucvgprprlemloc  7823  caucvgprprlemlim  7831  suplocexprlemmu  7838  suplocexprlemru  7839  suplocexprlemloc  7841  suplocsrlem  7928  axcaucvglemres  8019  nn0ltexp2  10861  resqrexlemglsq  11377  xrmaxifle  11601  xrmaxiflemlub  11603  divalglemeuneg  12278  bezoutlemnewy  12361  4sqlemsdc  12767  ctiunctlemfo  12854  mhmmnd  13496  txmetcnp  15034  mulcncf  15124  suplociccreex  15140  cnplimclemr  15185  limccnpcntop  15191  lgsval  15525
  Copyright terms: Public domain W3C validator