Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad4antr 486 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
3 | 2 | adantr 274 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad6antr 490 difinfinf 7035 ctssdclemn0 7044 cauappcvgprlemladdfu 7557 caucvgprlemloc 7578 caucvgprlemladdfu 7580 caucvgprlemlim 7584 caucvgprprlemml 7597 caucvgprprlemloc 7606 caucvgprprlemlim 7614 suplocexprlemmu 7621 suplocexprlemru 7622 suplocexprlemloc 7624 suplocsrlem 7711 axcaucvglemres 7802 resqrexlemglsq 10904 xrmaxifle 11125 xrmaxiflemlub 11127 divalglemeuneg 11795 bezoutlemnewy 11860 ctiunctlemfo 12140 txmetcnp 12878 mulcncf 12951 suplociccreex 12962 cnplimclemr 12998 limccnpcntop 13004 |
Copyright terms: Public domain | W3C validator |