| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) | 
| 3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: ad6antr 498 difinfinf 7167 ctssdclemn0 7176 cauappcvgprlemladdfu 7721 caucvgprlemloc 7742 caucvgprlemladdfu 7744 caucvgprlemlim 7748 caucvgprprlemml 7761 caucvgprprlemloc 7770 caucvgprprlemlim 7778 suplocexprlemmu 7785 suplocexprlemru 7786 suplocexprlemloc 7788 suplocsrlem 7875 axcaucvglemres 7966 nn0ltexp2 10801 resqrexlemglsq 11187 xrmaxifle 11411 xrmaxiflemlub 11413 divalglemeuneg 12088 bezoutlemnewy 12163 4sqlemsdc 12569 ctiunctlemfo 12656 mhmmnd 13246 txmetcnp 14754 mulcncf 14844 suplociccreex 14860 cnplimclemr 14905 limccnpcntop 14911 lgsval 15245 | 
| Copyright terms: Public domain | W3C validator |