| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| 3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7276 ctssdclemn0 7285 cauappcvgprlemladdfu 7849 caucvgprlemloc 7870 caucvgprlemladdfu 7872 caucvgprlemlim 7876 caucvgprprlemml 7889 caucvgprprlemloc 7898 caucvgprprlemlim 7906 suplocexprlemmu 7913 suplocexprlemru 7914 suplocexprlemloc 7916 suplocsrlem 8003 axcaucvglemres 8094 nn0ltexp2 10939 resqrexlemglsq 11541 xrmaxifle 11765 xrmaxiflemlub 11767 divalglemeuneg 12442 bezoutlemnewy 12525 4sqlemsdc 12931 ctiunctlemfo 13018 mhmmnd 13661 txmetcnp 15200 mulcncf 15290 suplociccreex 15306 cnplimclemr 15351 limccnpcntop 15357 lgsval 15691 |
| Copyright terms: Public domain | W3C validator |