| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| 3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7210 ctssdclemn0 7219 cauappcvgprlemladdfu 7774 caucvgprlemloc 7795 caucvgprlemladdfu 7797 caucvgprlemlim 7801 caucvgprprlemml 7814 caucvgprprlemloc 7823 caucvgprprlemlim 7831 suplocexprlemmu 7838 suplocexprlemru 7839 suplocexprlemloc 7841 suplocsrlem 7928 axcaucvglemres 8019 nn0ltexp2 10861 resqrexlemglsq 11377 xrmaxifle 11601 xrmaxiflemlub 11603 divalglemeuneg 12278 bezoutlemnewy 12361 4sqlemsdc 12767 ctiunctlemfo 12854 mhmmnd 13496 txmetcnp 15034 mulcncf 15124 suplociccreex 15140 cnplimclemr 15185 limccnpcntop 15191 lgsval 15525 |
| Copyright terms: Public domain | W3C validator |