Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad4antr 491 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
3 | 2 | adantr 274 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad6antr 495 difinfinf 7078 ctssdclemn0 7087 cauappcvgprlemladdfu 7616 caucvgprlemloc 7637 caucvgprlemladdfu 7639 caucvgprlemlim 7643 caucvgprprlemml 7656 caucvgprprlemloc 7665 caucvgprprlemlim 7673 suplocexprlemmu 7680 suplocexprlemru 7681 suplocexprlemloc 7683 suplocsrlem 7770 axcaucvglemres 7861 nn0ltexp2 10644 resqrexlemglsq 10986 xrmaxifle 11209 xrmaxiflemlub 11211 divalglemeuneg 11882 bezoutlemnewy 11951 ctiunctlemfo 12394 txmetcnp 13312 mulcncf 13385 suplociccreex 13396 cnplimclemr 13432 limccnpcntop 13438 lgsval 13699 |
Copyright terms: Public domain | W3C validator |