![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad6antr 498 difinfinf 7162 ctssdclemn0 7171 cauappcvgprlemladdfu 7716 caucvgprlemloc 7737 caucvgprlemladdfu 7739 caucvgprlemlim 7743 caucvgprprlemml 7756 caucvgprprlemloc 7765 caucvgprprlemlim 7773 suplocexprlemmu 7780 suplocexprlemru 7781 suplocexprlemloc 7783 suplocsrlem 7870 axcaucvglemres 7961 nn0ltexp2 10783 resqrexlemglsq 11169 xrmaxifle 11392 xrmaxiflemlub 11394 divalglemeuneg 12067 bezoutlemnewy 12136 4sqlemsdc 12541 ctiunctlemfo 12599 mhmmnd 13189 txmetcnp 14697 mulcncf 14787 suplociccreex 14803 cnplimclemr 14848 limccnpcntop 14854 lgsval 15161 |
Copyright terms: Public domain | W3C validator |