| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| 3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7176 ctssdclemn0 7185 cauappcvgprlemladdfu 7740 caucvgprlemloc 7761 caucvgprlemladdfu 7763 caucvgprlemlim 7767 caucvgprprlemml 7780 caucvgprprlemloc 7789 caucvgprprlemlim 7797 suplocexprlemmu 7804 suplocexprlemru 7805 suplocexprlemloc 7807 suplocsrlem 7894 axcaucvglemres 7985 nn0ltexp2 10820 resqrexlemglsq 11206 xrmaxifle 11430 xrmaxiflemlub 11432 divalglemeuneg 12107 bezoutlemnewy 12190 4sqlemsdc 12596 ctiunctlemfo 12683 mhmmnd 13324 txmetcnp 14862 mulcncf 14952 suplociccreex 14968 cnplimclemr 15013 limccnpcntop 15019 lgsval 15353 |
| Copyright terms: Public domain | W3C validator |