| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 494 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| 3 | 2 | adantr 276 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7236 ctssdclemn0 7245 cauappcvgprlemladdfu 7809 caucvgprlemloc 7830 caucvgprlemladdfu 7832 caucvgprlemlim 7836 caucvgprprlemml 7849 caucvgprprlemloc 7858 caucvgprprlemlim 7866 suplocexprlemmu 7873 suplocexprlemru 7874 suplocexprlemloc 7876 suplocsrlem 7963 axcaucvglemres 8054 nn0ltexp2 10898 resqrexlemglsq 11499 xrmaxifle 11723 xrmaxiflemlub 11725 divalglemeuneg 12400 bezoutlemnewy 12483 4sqlemsdc 12889 ctiunctlemfo 12976 mhmmnd 13619 txmetcnp 15157 mulcncf 15247 suplociccreex 15263 cnplimclemr 15308 limccnpcntop 15314 lgsval 15648 |
| Copyright terms: Public domain | W3C validator |