ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval GIF version

Theorem xrmaxiflemval 11605
Description: Lemma for xrmaxif 11606. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
Assertion
Ref Expression
xrmaxiflemval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
2 xrmaxiflemcl 11600 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
31, 2eqeltrid 2293 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 ∈ ℝ*)
4 vex 2776 . . . . 5 𝑥 ∈ V
54elpr 3655 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
6 xrmaxifle 11601 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
76, 1breqtrrdi 4089 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴𝑀)
8 xrlenlt 8144 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
93, 8syldan 282 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
107, 9mpbid 147 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐴)
11 breq2 4051 . . . . . . 7 (𝑥 = 𝐴 → (𝑀 < 𝑥𝑀 < 𝐴))
1211notbid 669 . . . . . 6 (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴))
1310, 12syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥))
14 xrmaxifle 11601 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1514ancoms 268 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
16 xrmaxiflemcom 11604 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
171, 16eqtrid 2251 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1815, 17breqtrrd 4075 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵𝑀)
19 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
20 xrlenlt 8144 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2119, 3, 20syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2218, 21mpbid 147 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐵)
23 breq2 4051 . . . . . . 7 (𝑥 = 𝐵 → (𝑀 < 𝑥𝑀 < 𝐵))
2423notbid 669 . . . . . 6 (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵))
2522, 24syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥))
2613, 25jaod 719 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ 𝑀 < 𝑥))
275, 26biimtrid 152 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥))
2827ralrimiv 2579 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥)
29 prid1g 3738 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ∈ {𝐴, 𝐵})
3029ad4antr 494 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵})
31 breq2 4051 . . . . . . 7 (𝑧 = 𝐴 → (𝑥 < 𝑧𝑥 < 𝐴))
3231rspcev 2878 . . . . . 6 ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3330, 32sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
34 prid2g 3739 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ∈ {𝐴, 𝐵})
3534ad4antlr 495 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵})
36 breq2 4051 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 < 𝑧𝑥 < 𝐵))
3736rspcev 2878 . . . . . 6 ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3835, 37sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
39 simplll 533 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈ ℝ*)
40 simpllr 534 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈ ℝ*)
41 simplr 528 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*)
421breq2i 4055 . . . . . . . 8 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4342biimpi 120 . . . . . . 7 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4443adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4539, 40, 41, 44xrmaxiflemlub 11603 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴𝑥 < 𝐵))
4633, 38, 45mpjaodan 800 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4746ex 115 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
4847ralrimiva 2580 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
493, 28, 483jca 1180 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  ifcif 3572  {cpr 3635   class class class wbr 4047  supcsup 7091  cr 7931  +∞cpnf 8111  -∞cmnf 8112  *cxr 8113   < clt 8114  cle 8115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354
This theorem is referenced by:  xrmaxif  11606
  Copyright terms: Public domain W3C validator