ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval GIF version

Theorem xrmaxiflemval 11393
Description: Lemma for xrmaxif 11394. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
Assertion
Ref Expression
xrmaxiflemval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
2 xrmaxiflemcl 11388 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
31, 2eqeltrid 2280 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 ∈ ℝ*)
4 vex 2763 . . . . 5 𝑥 ∈ V
54elpr 3639 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
6 xrmaxifle 11389 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
76, 1breqtrrdi 4071 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴𝑀)
8 xrlenlt 8084 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
93, 8syldan 282 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
107, 9mpbid 147 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐴)
11 breq2 4033 . . . . . . 7 (𝑥 = 𝐴 → (𝑀 < 𝑥𝑀 < 𝐴))
1211notbid 668 . . . . . 6 (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴))
1310, 12syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥))
14 xrmaxifle 11389 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1514ancoms 268 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
16 xrmaxiflemcom 11392 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
171, 16eqtrid 2238 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1815, 17breqtrrd 4057 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵𝑀)
19 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
20 xrlenlt 8084 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2119, 3, 20syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2218, 21mpbid 147 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐵)
23 breq2 4033 . . . . . . 7 (𝑥 = 𝐵 → (𝑀 < 𝑥𝑀 < 𝐵))
2423notbid 668 . . . . . 6 (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵))
2522, 24syl5ibrcom 157 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥))
2613, 25jaod 718 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ 𝑀 < 𝑥))
275, 26biimtrid 152 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥))
2827ralrimiv 2566 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥)
29 prid1g 3722 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ∈ {𝐴, 𝐵})
3029ad4antr 494 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵})
31 breq2 4033 . . . . . . 7 (𝑧 = 𝐴 → (𝑥 < 𝑧𝑥 < 𝐴))
3231rspcev 2864 . . . . . 6 ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3330, 32sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
34 prid2g 3723 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ∈ {𝐴, 𝐵})
3534ad4antlr 495 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵})
36 breq2 4033 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 < 𝑧𝑥 < 𝐵))
3736rspcev 2864 . . . . . 6 ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3835, 37sylancom 420 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
39 simplll 533 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈ ℝ*)
40 simpllr 534 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈ ℝ*)
41 simplr 528 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*)
421breq2i 4037 . . . . . . . 8 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4342biimpi 120 . . . . . . 7 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4443adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4539, 40, 41, 44xrmaxiflemlub 11391 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴𝑥 < 𝐵))
4633, 38, 45mpjaodan 799 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4746ex 115 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
4847ralrimiva 2567 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
493, 28, 483jca 1179 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  ifcif 3557  {cpr 3619   class class class wbr 4029  supcsup 7041  cr 7871  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  xrmaxif  11394
  Copyright terms: Public domain W3C validator