Proof of Theorem xrmaxiflemval
Step | Hyp | Ref
| Expression |
1 | | xrmaxiflemval.m |
. . 3
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) |
2 | | xrmaxiflemcl 11208 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |
3 | 1, 2 | eqeltrid 2257 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 ∈
ℝ*) |
4 | | vex 2733 |
. . . . 5
⊢ 𝑥 ∈ V |
5 | 4 | elpr 3604 |
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | | xrmaxifle 11209 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
7 | 6, 1 | breqtrrdi 4031 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ 𝑀) |
8 | | xrlenlt 7984 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) |
9 | 3, 8 | syldan 280 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) |
10 | 7, 9 | mpbid 146 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐴) |
11 | | breq2 3993 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐴)) |
12 | 11 | notbid 662 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴)) |
13 | 10, 12 | syl5ibrcom 156 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥)) |
14 | | xrmaxifle 11209 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
15 | 14 | ancoms 266 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
16 | | xrmaxiflemcom 11212 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
17 | 1, 16 | eqtrid 2215 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
18 | 15, 17 | breqtrrd 4017 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ 𝑀) |
19 | | simpr 109 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) |
20 | | xrlenlt 7984 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) |
21 | 19, 3, 20 | syl2anc 409 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) |
22 | 18, 21 | mpbid 146 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐵) |
23 | | breq2 3993 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐵)) |
24 | 23 | notbid 662 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵)) |
25 | 22, 24 | syl5ibrcom 156 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥)) |
26 | 13, 25 | jaod 712 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑀 < 𝑥)) |
27 | 5, 26 | syl5bi 151 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥)) |
28 | 27 | ralrimiv 2542 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥) |
29 | | prid1g 3687 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ∈ {𝐴, 𝐵}) |
30 | 29 | ad4antr 491 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵}) |
31 | | breq2 3993 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐴)) |
32 | 31 | rspcev 2834 |
. . . . . 6
⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
33 | 30, 32 | sylancom 418 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
34 | | prid2g 3688 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ∈ {𝐴, 𝐵}) |
35 | 34 | ad4antlr 492 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) |
36 | | breq2 3993 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐵)) |
37 | 36 | rspcev 2834 |
. . . . . 6
⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
38 | 35, 37 | sylancom 418 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
39 | | simplll 528 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈
ℝ*) |
40 | | simpllr 529 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈
ℝ*) |
41 | | simplr 525 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*) |
42 | 1 | breq2i 3997 |
. . . . . . . 8
⊢ (𝑥 < 𝑀 ↔ 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
43 | 42 | biimpi 119 |
. . . . . . 7
⊢ (𝑥 < 𝑀 → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
44 | 43 | adantl 275 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
45 | 39, 40, 41, 44 | xrmaxiflemlub 11211 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴 ∨ 𝑥 < 𝐵)) |
46 | 33, 38, 45 | mpjaodan 793 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
47 | 46 | ex 114 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) |
48 | 47 | ralrimiva 2543 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) |
49 | 3, 28, 48 | 3jca 1172 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑀 ∈ ℝ* ∧
∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |