Proof of Theorem xrmaxiflemval
| Step | Hyp | Ref
| Expression |
| 1 | | xrmaxiflemval.m |
. . 3
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) |
| 2 | | xrmaxiflemcl 11427 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |
| 3 | 1, 2 | eqeltrid 2283 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 ∈
ℝ*) |
| 4 | | vex 2766 |
. . . . 5
⊢ 𝑥 ∈ V |
| 5 | 4 | elpr 3644 |
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 6 | | xrmaxifle 11428 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| 7 | 6, 1 | breqtrrdi 4076 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ 𝑀) |
| 8 | | xrlenlt 8108 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) |
| 9 | 3, 8 | syldan 282 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) |
| 10 | 7, 9 | mpbid 147 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐴) |
| 11 | | breq2 4038 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐴)) |
| 12 | 11 | notbid 668 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴)) |
| 13 | 10, 12 | syl5ibrcom 157 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥)) |
| 14 | | xrmaxifle 11428 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
| 15 | 14 | ancoms 268 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
| 16 | | xrmaxiflemcom 11431 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
| 17 | 1, 16 | eqtrid 2241 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
| 18 | 15, 17 | breqtrrd 4062 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ 𝑀) |
| 19 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) |
| 20 | | xrlenlt 8108 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) |
| 21 | 19, 3, 20 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) |
| 22 | 18, 21 | mpbid 147 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐵) |
| 23 | | breq2 4038 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐵)) |
| 24 | 23 | notbid 668 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵)) |
| 25 | 22, 24 | syl5ibrcom 157 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥)) |
| 26 | 13, 25 | jaod 718 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑀 < 𝑥)) |
| 27 | 5, 26 | biimtrid 152 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥)) |
| 28 | 27 | ralrimiv 2569 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥) |
| 29 | | prid1g 3727 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ∈ {𝐴, 𝐵}) |
| 30 | 29 | ad4antr 494 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵}) |
| 31 | | breq2 4038 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐴)) |
| 32 | 31 | rspcev 2868 |
. . . . . 6
⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
| 33 | 30, 32 | sylancom 420 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
| 34 | | prid2g 3728 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ∈ {𝐴, 𝐵}) |
| 35 | 34 | ad4antlr 495 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) |
| 36 | | breq2 4038 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐵)) |
| 37 | 36 | rspcev 2868 |
. . . . . 6
⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
| 38 | 35, 37 | sylancom 420 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
| 39 | | simplll 533 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈
ℝ*) |
| 40 | | simpllr 534 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈
ℝ*) |
| 41 | | simplr 528 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*) |
| 42 | 1 | breq2i 4042 |
. . . . . . . 8
⊢ (𝑥 < 𝑀 ↔ 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| 43 | 42 | biimpi 120 |
. . . . . . 7
⊢ (𝑥 < 𝑀 → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| 44 | 43 | adantl 277 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
| 45 | 39, 40, 41, 44 | xrmaxiflemlub 11430 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴 ∨ 𝑥 < 𝐵)) |
| 46 | 33, 38, 45 | mpjaodan 799 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) |
| 47 | 46 | ex 115 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) |
| 48 | 47 | ralrimiva 2570 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) |
| 49 | 3, 28, 48 | 3jca 1179 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑀 ∈ ℝ* ∧
∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |