ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemval GIF version

Theorem xrmaxiflemval 11213
Description: Lemma for xrmaxif 11214. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
Hypothesis
Ref Expression
xrmaxiflemval.m 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
Assertion
Ref Expression
xrmaxiflemval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem xrmaxiflemval
StepHypRef Expression
1 xrmaxiflemval.m . . 3 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
2 xrmaxiflemcl 11208 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
31, 2eqeltrid 2257 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 ∈ ℝ*)
4 vex 2733 . . . . 5 𝑥 ∈ V
54elpr 3604 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
6 xrmaxifle 11209 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
76, 1breqtrrdi 4031 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴𝑀)
8 xrlenlt 7984 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
93, 8syldan 280 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑀 ↔ ¬ 𝑀 < 𝐴))
107, 9mpbid 146 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐴)
11 breq2 3993 . . . . . . 7 (𝑥 = 𝐴 → (𝑀 < 𝑥𝑀 < 𝐴))
1211notbid 662 . . . . . 6 (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴))
1310, 12syl5ibrcom 156 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥))
14 xrmaxifle 11209 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1514ancoms 266 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
16 xrmaxiflemcom 11212 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
171, 16eqtrid 2215 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
1815, 17breqtrrd 4017 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵𝑀)
19 simpr 109 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
20 xrlenlt 7984 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2119, 3, 20syl2anc 409 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝑀 ↔ ¬ 𝑀 < 𝐵))
2218, 21mpbid 146 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝑀 < 𝐵)
23 breq2 3993 . . . . . . 7 (𝑥 = 𝐵 → (𝑀 < 𝑥𝑀 < 𝐵))
2423notbid 662 . . . . . 6 (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵))
2522, 24syl5ibrcom 156 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥))
2613, 25jaod 712 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ 𝑀 < 𝑥))
275, 26syl5bi 151 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥))
2827ralrimiv 2542 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥)
29 prid1g 3687 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ∈ {𝐴, 𝐵})
3029ad4antr 491 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵})
31 breq2 3993 . . . . . . 7 (𝑧 = 𝐴 → (𝑥 < 𝑧𝑥 < 𝐴))
3231rspcev 2834 . . . . . 6 ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3330, 32sylancom 418 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
34 prid2g 3688 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ∈ {𝐴, 𝐵})
3534ad4antlr 492 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵})
36 breq2 3993 . . . . . . 7 (𝑧 = 𝐵 → (𝑥 < 𝑧𝑥 < 𝐵))
3736rspcev 2834 . . . . . 6 ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
3835, 37sylancom 418 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
39 simplll 528 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈ ℝ*)
40 simpllr 529 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈ ℝ*)
41 simplr 525 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*)
421breq2i 3997 . . . . . . . 8 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4342biimpi 119 . . . . . . 7 (𝑥 < 𝑀𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4443adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
4539, 40, 41, 44xrmaxiflemlub 11211 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴𝑥 < 𝐵))
4633, 38, 45mpjaodan 793 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)
4746ex 114 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
4847ralrimiva 2543 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))
493, 28, 483jca 1172 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ifcif 3526  {cpr 3584   class class class wbr 3989  supcsup 6959  cr 7773  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   < clt 7954  cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  xrmaxif  11214
  Copyright terms: Public domain W3C validator