Proof of Theorem xrmaxiflemval
| Step | Hyp | Ref
 | Expression | 
| 1 |   | xrmaxiflemval.m | 
. . 3
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) | 
| 2 |   | xrmaxiflemcl 11410 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) | 
| 3 | 1, 2 | eqeltrid 2283 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 ∈
ℝ*) | 
| 4 |   | vex 2766 | 
. . . . 5
⊢ 𝑥 ∈ V | 
| 5 | 4 | elpr 3643 | 
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | 
| 6 |   | xrmaxifle 11411 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | 
| 7 | 6, 1 | breqtrrdi 4075 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ≤ 𝑀) | 
| 8 |   | xrlenlt 8091 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) | 
| 9 | 3, 8 | syldan 282 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐴)) | 
| 10 | 7, 9 | mpbid 147 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐴) | 
| 11 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐴)) | 
| 12 | 11 | notbid 668 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐴)) | 
| 13 | 10, 12 | syl5ibrcom 157 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐴 → ¬ 𝑀 < 𝑥)) | 
| 14 |   | xrmaxifle 11411 | 
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) | 
| 15 | 14 | ancoms 268 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) | 
| 16 |   | xrmaxiflemcom 11414 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) | 
| 17 | 1, 16 | eqtrid 2241 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝑀 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) | 
| 18 | 15, 17 | breqtrrd 4061 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ≤ 𝑀) | 
| 19 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) | 
| 20 |   | xrlenlt 8091 | 
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝑀 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) | 
| 21 | 19, 3, 20 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 ≤ 𝑀 ↔ ¬ 𝑀 < 𝐵)) | 
| 22 | 18, 21 | mpbid 147 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ¬ 𝑀 < 𝐵) | 
| 23 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑀 < 𝑥 ↔ 𝑀 < 𝐵)) | 
| 24 | 23 | notbid 668 | 
. . . . . 6
⊢ (𝑥 = 𝐵 → (¬ 𝑀 < 𝑥 ↔ ¬ 𝑀 < 𝐵)) | 
| 25 | 22, 24 | syl5ibrcom 157 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐵 → ¬ 𝑀 < 𝑥)) | 
| 26 | 13, 25 | jaod 718 | 
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑀 < 𝑥)) | 
| 27 | 5, 26 | biimtrid 152 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑀 < 𝑥)) | 
| 28 | 27 | ralrimiv 2569 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥) | 
| 29 |   | prid1g 3726 | 
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ∈ {𝐴, 𝐵}) | 
| 30 | 29 | ad4antr 494 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → 𝐴 ∈ {𝐴, 𝐵}) | 
| 31 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐴)) | 
| 32 | 31 | rspcev 2868 | 
. . . . . 6
⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) | 
| 33 | 30, 32 | sylancom 420 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐴) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) | 
| 34 |   | prid2g 3727 | 
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ∈ {𝐴, 𝐵}) | 
| 35 | 34 | ad4antlr 495 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) | 
| 36 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑥 < 𝑧 ↔ 𝑥 < 𝐵)) | 
| 37 | 36 | rspcev 2868 | 
. . . . . 6
⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) | 
| 38 | 35, 37 | sylancom 420 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) ∧ 𝑥 < 𝐵) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) | 
| 39 |   | simplll 533 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐴 ∈
ℝ*) | 
| 40 |   | simpllr 534 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝐵 ∈
ℝ*) | 
| 41 |   | simplr 528 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ*) | 
| 42 | 1 | breq2i 4041 | 
. . . . . . . 8
⊢ (𝑥 < 𝑀 ↔ 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | 
| 43 | 42 | biimpi 120 | 
. . . . . . 7
⊢ (𝑥 < 𝑀 → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | 
| 44 | 43 | adantl 277 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → 𝑥 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) | 
| 45 | 39, 40, 41, 44 | xrmaxiflemlub 11413 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → (𝑥 < 𝐴 ∨ 𝑥 < 𝐵)) | 
| 46 | 33, 38, 45 | mpjaodan 799 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < 𝑀) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧) | 
| 47 | 46 | ex 115 | 
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) | 
| 48 | 47 | ralrimiva 2570 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)) | 
| 49 | 3, 28, 48 | 3jca 1179 | 
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑀 ∈ ℝ* ∧
∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |