ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub GIF version

Theorem suplocexprlemub 7672
Description: Lemma for suplocexpr 7674. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemub (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑦   𝑥,𝐴,𝑧,𝑢,𝑦   𝑤,𝐵   𝜑,𝑢,𝑤,𝑦   𝜑,𝑥,𝑧   𝑧,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemub
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵<P 𝑦)
2 suplocexpr.m . . . . . . . 8 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . . . 8 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . . . 8 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
5 suplocexpr.b . . . . . . . 8 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
62, 3, 4, 5suplocexprlemex 7671 . . . . . . 7 (𝜑𝐵P)
76ad2antrr 485 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵P)
82, 3, 4suplocexprlemss 7664 . . . . . . . 8 (𝜑𝐴P)
98ad2antrr 485 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐴P)
10 simplr 525 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦𝐴)
119, 10sseldd 3148 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦P)
12 ltdfpr 7455 . . . . . 6 ((𝐵P𝑦P) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
137, 11, 12syl2anc 409 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
141, 13mpbid 146 . . . 4 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))
15 simprrl 534 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (2nd𝐵))
165suplocexprlem2b 7663 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
178, 16syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1817eleq2d 2240 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1918ad3antrrr 489 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
2015, 19mpbid 146 . . . . . . 7 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
21 breq2 3991 . . . . . . . . 9 (𝑢 = 𝑠 → (𝑤 <Q 𝑢𝑤 <Q 𝑠))
2221rexbidv 2471 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2322elrab 2886 . . . . . . 7 (𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2420, 23sylib 121 . . . . . 6 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2524simprd 113 . . . . 5 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠)
26 simprrr 535 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (1st𝑦))
2726adantr 274 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (1st𝑦))
28 simprr 527 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 <Q 𝑠)
2911ad2antrr 485 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑦P)
30 prop 7424 . . . . . . . . . 10 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
32 eleq2 2234 . . . . . . . . . 10 (𝑡 = (2nd𝑦) → (𝑤𝑡𝑤 ∈ (2nd𝑦)))
33 simprl 526 . . . . . . . . . . 11 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 (2nd𝐴))
34 vex 2733 . . . . . . . . . . . 12 𝑤 ∈ V
3534elint2 3836 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3633, 35sylib 121 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
37 fo2nd 6134 . . . . . . . . . . . . 13 2nd :V–onto→V
38 fofun 5419 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
40 vex 2733 . . . . . . . . . . . . 13 𝑦 ∈ V
41 fof 5418 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
4237, 41ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
4342fdmi 5353 . . . . . . . . . . . . 13 dom 2nd = V
4440, 43eleqtrri 2246 . . . . . . . . . . . 12 𝑦 ∈ dom 2nd
45 funfvima 5724 . . . . . . . . . . . 12 ((Fun 2nd𝑦 ∈ dom 2nd ) → (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴)))
4639, 44, 45mp2an 424 . . . . . . . . . . 11 (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴))
4746ad4antlr 492 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (2nd𝑦) ∈ (2nd𝐴))
4832, 36, 47rspcdva 2839 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 ∈ (2nd𝑦))
49 prcunqu 7434 . . . . . . . . 9 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑤 ∈ (2nd𝑦)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5031, 48, 49syl2anc 409 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5128, 50mpd 13 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (2nd𝑦))
5227, 51jca 304 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
53 simplrl 530 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠Q)
54 prdisj 7441 . . . . . . 7 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠Q) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5531, 53, 54syl2anc 409 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5652, 55pm2.21fal 1368 . . . . 5 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⊥)
5725, 56rexlimddv 2592 . . . 4 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ⊥)
5814, 57rexlimddv 2592 . . 3 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ⊥)
5958inegd 1367 . 2 ((𝜑𝑦𝐴) → ¬ 𝐵<P 𝑦)
6059ralrimiva 2543 1 (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wfal 1353  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  Vcvv 2730  wss 3121  cop 3584   cuni 3794   cint 3829   class class class wbr 3987  dom cdm 4609  cima 4612  Fun wfun 5190  wf 5192  ontowfo 5194  cfv 5196  1st c1st 6114  2nd c2nd 6115  Qcnq 7229   <Q cltq 7234  Pcnp 7240  <P cltp 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-2o 6393  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-enq0 7373  df-nq0 7374  df-0nq0 7375  df-plq0 7376  df-mq0 7377  df-inp 7415  df-iltp 7419
This theorem is referenced by:  suplocexpr  7674
  Copyright terms: Public domain W3C validator