Step | Hyp | Ref
| Expression |
1 | | simpr 110 |
. . . . 5
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā šµ<P š¦) |
2 | | suplocexpr.m |
. . . . . . . 8
ā¢ (š ā āš„ š„ ā š“) |
3 | | suplocexpr.ub |
. . . . . . . 8
ā¢ (š ā āš„ ā P āš¦ ā š“ š¦<P š„) |
4 | | suplocexpr.loc |
. . . . . . . 8
ā¢ (š ā āš„ ā P āš¦ ā P (š„<P
š¦ ā (āš§ ā š“ š„<P š§ āØ āš§ ā š“ š§<P š¦))) |
5 | | suplocexpr.b |
. . . . . . . 8
ā¢ šµ = āØāŖ (1st ā š“), {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}ā© |
6 | 2, 3, 4, 5 | suplocexprlemex 7723 |
. . . . . . 7
ā¢ (š ā šµ ā P) |
7 | 6 | ad2antrr 488 |
. . . . . 6
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā šµ ā P) |
8 | 2, 3, 4 | suplocexprlemss 7716 |
. . . . . . . 8
ā¢ (š ā š“ ā P) |
9 | 8 | ad2antrr 488 |
. . . . . . 7
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā š“ ā P) |
10 | | simplr 528 |
. . . . . . 7
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā š¦ ā š“) |
11 | 9, 10 | sseldd 3158 |
. . . . . 6
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā š¦ ā P) |
12 | | ltdfpr 7507 |
. . . . . 6
ā¢ ((šµ ā P ā§
š¦ ā P)
ā (šµ<P š¦ ā āš ā Q (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) |
13 | 7, 11, 12 | syl2anc 411 |
. . . . 5
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā (šµ<P š¦ ā āš ā Q (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) |
14 | 1, 13 | mpbid 147 |
. . . 4
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā āš ā Q (š ā (2nd
āšµ) ā§ š ā (1st
āš¦))) |
15 | | simprrl 539 |
. . . . . . . 8
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā š ā (2nd
āšµ)) |
16 | 5 | suplocexprlem2b 7715 |
. . . . . . . . . . 11
ā¢ (š“ ā P ā
(2nd āšµ) =
{š¢ ā Q
ā£ āš¤ ā
ā© (2nd ā š“)š¤ <Q š¢}) |
17 | 8, 16 | syl 14 |
. . . . . . . . . 10
ā¢ (š ā (2nd
āšµ) = {š¢ ā Q ā£
āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) |
18 | 17 | eleq2d 2247 |
. . . . . . . . 9
ā¢ (š ā (š ā (2nd āšµ) ā š ā {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢})) |
19 | 18 | ad3antrrr 492 |
. . . . . . . 8
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā (š ā (2nd
āšµ) ā š ā {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢})) |
20 | 15, 19 | mpbid 147 |
. . . . . . 7
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā š ā {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢}) |
21 | | breq2 4009 |
. . . . . . . . 9
ā¢ (š¢ = š ā (š¤ <Q š¢ ā š¤ <Q š )) |
22 | 21 | rexbidv 2478 |
. . . . . . . 8
ā¢ (š¢ = š ā (āš¤ ā ā©
(2nd ā š“)š¤ <Q š¢ ā āš¤ ā ā© (2nd ā š“)š¤ <Q š )) |
23 | 22 | elrab 2895 |
. . . . . . 7
ā¢ (š ā {š¢ ā Q ā£ āš¤ ā ā© (2nd ā š“)š¤ <Q š¢} ā (š ā Q ā§ āš¤ ā ā© (2nd ā š“)š¤ <Q š )) |
24 | 20, 23 | sylib 122 |
. . . . . 6
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā (š ā Q ā§
āš¤ ā ā© (2nd ā š“)š¤ <Q š )) |
25 | 24 | simprd 114 |
. . . . 5
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā
āš¤ ā ā© (2nd ā š“)š¤ <Q š ) |
26 | | simprrr 540 |
. . . . . . . 8
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā š ā (1st
āš¦)) |
27 | 26 | adantr 276 |
. . . . . . 7
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š ā (1st āš¦)) |
28 | | simprr 531 |
. . . . . . . 8
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š¤ <Q š ) |
29 | 11 | ad2antrr 488 |
. . . . . . . . . 10
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š¦ ā P) |
30 | | prop 7476 |
. . . . . . . . . 10
ā¢ (š¦ ā P ā
āØ(1st āš¦), (2nd āš¦)ā© ā
P) |
31 | 29, 30 | syl 14 |
. . . . . . . . 9
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā āØ(1st
āš¦), (2nd
āš¦)ā© ā
P) |
32 | | eleq2 2241 |
. . . . . . . . . 10
ā¢ (š” = (2nd āš¦) ā (š¤ ā š” ā š¤ ā (2nd āš¦))) |
33 | | simprl 529 |
. . . . . . . . . . 11
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š¤ ā ā©
(2nd ā š“)) |
34 | | vex 2742 |
. . . . . . . . . . . 12
ā¢ š¤ ā V |
35 | 34 | elint2 3853 |
. . . . . . . . . . 11
ā¢ (š¤ ā ā© (2nd ā š“) ā āš” ā (2nd ā š“)š¤ ā š”) |
36 | 33, 35 | sylib 122 |
. . . . . . . . . 10
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā āš” ā (2nd ā
š“)š¤ ā š”) |
37 | | fo2nd 6161 |
. . . . . . . . . . . . 13
ā¢
2nd :VāontoāV |
38 | | fofun 5441 |
. . . . . . . . . . . . 13
ā¢
(2nd :VāontoāV ā Fun 2nd ) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . 12
ā¢ Fun
2nd |
40 | | vex 2742 |
. . . . . . . . . . . . 13
ā¢ š¦ ā V |
41 | | fof 5440 |
. . . . . . . . . . . . . . 15
ā¢
(2nd :VāontoāV ā 2nd
:Vā¶V) |
42 | 37, 41 | ax-mp 5 |
. . . . . . . . . . . . . 14
ā¢
2nd :Vā¶V |
43 | 42 | fdmi 5375 |
. . . . . . . . . . . . 13
ā¢ dom
2nd = V |
44 | 40, 43 | eleqtrri 2253 |
. . . . . . . . . . . 12
ā¢ š¦ ā dom
2nd |
45 | | funfvima 5750 |
. . . . . . . . . . . 12
ā¢ ((Fun
2nd ā§ š¦
ā dom 2nd ) ā (š¦ ā š“ ā (2nd āš¦) ā (2nd ā
š“))) |
46 | 39, 44, 45 | mp2an 426 |
. . . . . . . . . . 11
ā¢ (š¦ ā š“ ā (2nd āš¦) ā (2nd ā
š“)) |
47 | 46 | ad4antlr 495 |
. . . . . . . . . 10
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā (2nd
āš¦) ā
(2nd ā š“)) |
48 | 32, 36, 47 | rspcdva 2848 |
. . . . . . . . 9
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š¤ ā (2nd āš¦)) |
49 | | prcunqu 7486 |
. . . . . . . . 9
ā¢
((āØ(1st āš¦), (2nd āš¦)ā© ā P ā§ š¤ ā (2nd
āš¦)) ā (š¤ <Q
š ā š ā (2nd āš¦))) |
50 | 31, 48, 49 | syl2anc 411 |
. . . . . . . 8
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā (š¤ <Q š ā š ā (2nd āš¦))) |
51 | 28, 50 | mpd 13 |
. . . . . . 7
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š ā (2nd āš¦)) |
52 | 27, 51 | jca 306 |
. . . . . 6
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā (š ā (1st āš¦) ā§ š ā (2nd āš¦))) |
53 | | simplrl 535 |
. . . . . . 7
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā š ā Q) |
54 | | prdisj 7493 |
. . . . . . 7
ā¢
((āØ(1st āš¦), (2nd āš¦)ā© ā P ā§ š ā Q) ā
Ā¬ (š ā
(1st āš¦)
ā§ š ā
(2nd āš¦))) |
55 | 31, 53, 54 | syl2anc 411 |
. . . . . 6
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā Ā¬ (š ā (1st
āš¦) ā§ š ā (2nd
āš¦))) |
56 | 52, 55 | pm2.21fal 1373 |
. . . . 5
ā¢
(((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā§ (š¤ ā ā© (2nd ā š“) ā§ š¤ <Q š )) ā
ā„) |
57 | 25, 56 | rexlimddv 2599 |
. . . 4
ā¢ ((((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā§ (š ā Q ā§ (š ā (2nd
āšµ) ā§ š ā (1st
āš¦)))) ā
ā„) |
58 | 14, 57 | rexlimddv 2599 |
. . 3
ā¢ (((š ā§ š¦ ā š“) ā§ šµ<P š¦) ā
ā„) |
59 | 58 | inegd 1372 |
. 2
ā¢ ((š ā§ š¦ ā š“) ā Ā¬ šµ<P š¦) |
60 | 59 | ralrimiva 2550 |
1
ā¢ (š ā āš¦ ā š“ Ā¬ šµ<P š¦) |