ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub GIF version

Theorem suplocexprlemub 7740
Description: Lemma for suplocexpr 7742. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemub (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑦   𝑥,𝐴,𝑧,𝑢,𝑦   𝑤,𝐵   𝜑,𝑢,𝑤,𝑦   𝜑,𝑥,𝑧   𝑧,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemub
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵<P 𝑦)
2 suplocexpr.m . . . . . . . 8 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . . . 8 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . . . 8 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
5 suplocexpr.b . . . . . . . 8 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
62, 3, 4, 5suplocexprlemex 7739 . . . . . . 7 (𝜑𝐵P)
76ad2antrr 488 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵P)
82, 3, 4suplocexprlemss 7732 . . . . . . . 8 (𝜑𝐴P)
98ad2antrr 488 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐴P)
10 simplr 528 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦𝐴)
119, 10sseldd 3171 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦P)
12 ltdfpr 7523 . . . . . 6 ((𝐵P𝑦P) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
137, 11, 12syl2anc 411 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
141, 13mpbid 147 . . . 4 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))
15 simprrl 539 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (2nd𝐵))
165suplocexprlem2b 7731 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
178, 16syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1817eleq2d 2259 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1918ad3antrrr 492 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
2015, 19mpbid 147 . . . . . . 7 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
21 breq2 4022 . . . . . . . . 9 (𝑢 = 𝑠 → (𝑤 <Q 𝑢𝑤 <Q 𝑠))
2221rexbidv 2491 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2322elrab 2908 . . . . . . 7 (𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2420, 23sylib 122 . . . . . 6 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2524simprd 114 . . . . 5 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠)
26 simprrr 540 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (1st𝑦))
2726adantr 276 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (1st𝑦))
28 simprr 531 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 <Q 𝑠)
2911ad2antrr 488 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑦P)
30 prop 7492 . . . . . . . . . 10 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
32 eleq2 2253 . . . . . . . . . 10 (𝑡 = (2nd𝑦) → (𝑤𝑡𝑤 ∈ (2nd𝑦)))
33 simprl 529 . . . . . . . . . . 11 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 (2nd𝐴))
34 vex 2755 . . . . . . . . . . . 12 𝑤 ∈ V
3534elint2 3866 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3633, 35sylib 122 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
37 fo2nd 6177 . . . . . . . . . . . . 13 2nd :V–onto→V
38 fofun 5454 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
40 vex 2755 . . . . . . . . . . . . 13 𝑦 ∈ V
41 fof 5453 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
4237, 41ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
4342fdmi 5388 . . . . . . . . . . . . 13 dom 2nd = V
4440, 43eleqtrri 2265 . . . . . . . . . . . 12 𝑦 ∈ dom 2nd
45 funfvima 5764 . . . . . . . . . . . 12 ((Fun 2nd𝑦 ∈ dom 2nd ) → (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴)))
4639, 44, 45mp2an 426 . . . . . . . . . . 11 (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴))
4746ad4antlr 495 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (2nd𝑦) ∈ (2nd𝐴))
4832, 36, 47rspcdva 2861 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 ∈ (2nd𝑦))
49 prcunqu 7502 . . . . . . . . 9 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑤 ∈ (2nd𝑦)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5031, 48, 49syl2anc 411 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5128, 50mpd 13 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (2nd𝑦))
5227, 51jca 306 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
53 simplrl 535 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠Q)
54 prdisj 7509 . . . . . . 7 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠Q) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5531, 53, 54syl2anc 411 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5652, 55pm2.21fal 1384 . . . . 5 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⊥)
5725, 56rexlimddv 2612 . . . 4 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ⊥)
5814, 57rexlimddv 2612 . . 3 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ⊥)
5958inegd 1383 . 2 ((𝜑𝑦𝐴) → ¬ 𝐵<P 𝑦)
6059ralrimiva 2563 1 (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wex 1503  wcel 2160  wral 2468  wrex 2469  {crab 2472  Vcvv 2752  wss 3144  cop 3610   cuni 3824   cint 3859   class class class wbr 4018  dom cdm 4641  cima 4644  Fun wfun 5225  wf 5227  ontowfo 5229  cfv 5231  1st c1st 6157  2nd c2nd 6158  Qcnq 7297   <Q cltq 7302  Pcnp 7308  <P cltp 7312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-2o 6436  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7321  df-pli 7322  df-mi 7323  df-lti 7324  df-plpq 7361  df-mpq 7362  df-enq 7364  df-nqqs 7365  df-plqqs 7366  df-mqqs 7367  df-1nqqs 7368  df-rq 7369  df-ltnqqs 7370  df-enq0 7441  df-nq0 7442  df-0nq0 7443  df-plq0 7444  df-mq0 7445  df-inp 7483  df-iltp 7487
This theorem is referenced by:  suplocexpr  7742
  Copyright terms: Public domain W3C validator