| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → 𝐵<P 𝑦) |
| 2 | | suplocexpr.m |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 3 | | suplocexpr.ub |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
| 4 | | suplocexpr.loc |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
| 5 | | suplocexpr.b |
. . . . . . . 8
⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
| 6 | 2, 3, 4, 5 | suplocexprlemex 7789 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ P) |
| 7 | 6 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → 𝐵 ∈ P) |
| 8 | 2, 3, 4 | suplocexprlemss 7782 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ P) |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → 𝐴 ⊆ P) |
| 10 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → 𝑦 ∈ 𝐴) |
| 11 | 9, 10 | sseldd 3184 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → 𝑦 ∈ P) |
| 12 | | ltdfpr 7573 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ P)
→ (𝐵<P 𝑦 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → (𝐵<P 𝑦 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 14 | 1, 13 | mpbid 147 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦))) |
| 15 | | simprrl 539 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) → 𝑠 ∈ (2nd
‘𝐵)) |
| 16 | 5 | suplocexprlem2b 7781 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ P →
(2nd ‘𝐵) =
{𝑢 ∈ Q
∣ ∃𝑤 ∈
∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| 17 | 8, 16 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝐵) = {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| 18 | 17 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (2nd ‘𝐵) ↔ 𝑠 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) |
| 19 | 18 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) → (𝑠 ∈ (2nd
‘𝐵) ↔ 𝑠 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) |
| 20 | 15, 19 | mpbid 147 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) → 𝑠 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
| 21 | | breq2 4037 |
. . . . . . . . 9
⊢ (𝑢 = 𝑠 → (𝑤 <Q 𝑢 ↔ 𝑤 <Q 𝑠)) |
| 22 | 21 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑢 = 𝑠 → (∃𝑤 ∈ ∩
(2nd “ 𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑠)) |
| 23 | 22 | elrab 2920 |
. . . . . . 7
⊢ (𝑠 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ↔ (𝑠 ∈ Q ∧ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑠)) |
| 24 | 20, 23 | sylib 122 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) → (𝑠 ∈ Q ∧
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑠)) |
| 25 | 24 | simprd 114 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) →
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑠) |
| 26 | | simprrr 540 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) → 𝑠 ∈ (1st
‘𝑦)) |
| 27 | 26 | adantr 276 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (1st ‘𝑦)) |
| 28 | | simprr 531 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 <Q 𝑠) |
| 29 | 11 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑦 ∈ P) |
| 30 | | prop 7542 |
. . . . . . . . . 10
⊢ (𝑦 ∈ P →
〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈
P) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 〈(1st
‘𝑦), (2nd
‘𝑦)〉 ∈
P) |
| 32 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑡 = (2nd ‘𝑦) → (𝑤 ∈ 𝑡 ↔ 𝑤 ∈ (2nd ‘𝑦))) |
| 33 | | simprl 529 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 ∈ ∩
(2nd “ 𝐴)) |
| 34 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V |
| 35 | 34 | elint2 3881 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ∩ (2nd “ 𝐴) ↔ ∀𝑡 ∈ (2nd “ 𝐴)𝑤 ∈ 𝑡) |
| 36 | 33, 35 | sylib 122 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → ∀𝑡 ∈ (2nd “
𝐴)𝑤 ∈ 𝑡) |
| 37 | | fo2nd 6216 |
. . . . . . . . . . . . 13
⊢
2nd :V–onto→V |
| 38 | | fofun 5481 |
. . . . . . . . . . . . 13
⊢
(2nd :V–onto→V → Fun 2nd ) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
2nd |
| 40 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 41 | | fof 5480 |
. . . . . . . . . . . . . . 15
⊢
(2nd :V–onto→V → 2nd
:V⟶V) |
| 42 | 37, 41 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
2nd :V⟶V |
| 43 | 42 | fdmi 5415 |
. . . . . . . . . . . . 13
⊢ dom
2nd = V |
| 44 | 40, 43 | eleqtrri 2272 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ dom
2nd |
| 45 | | funfvima 5794 |
. . . . . . . . . . . 12
⊢ ((Fun
2nd ∧ 𝑦
∈ dom 2nd ) → (𝑦 ∈ 𝐴 → (2nd ‘𝑦) ∈ (2nd “
𝐴))) |
| 46 | 39, 44, 45 | mp2an 426 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (2nd ‘𝑦) ∈ (2nd “
𝐴)) |
| 47 | 46 | ad4antlr 495 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → (2nd
‘𝑦) ∈
(2nd “ 𝐴)) |
| 48 | 32, 36, 47 | rspcdva 2873 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 ∈ (2nd ‘𝑦)) |
| 49 | | prcunqu 7552 |
. . . . . . . . 9
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑤 ∈ (2nd
‘𝑦)) → (𝑤 <Q
𝑠 → 𝑠 ∈ (2nd ‘𝑦))) |
| 50 | 31, 48, 49 | syl2anc 411 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑤 <Q 𝑠 → 𝑠 ∈ (2nd ‘𝑦))) |
| 51 | 28, 50 | mpd 13 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (2nd ‘𝑦)) |
| 52 | 27, 51 | jca 306 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑠 ∈ (1st ‘𝑦) ∧ 𝑠 ∈ (2nd ‘𝑦))) |
| 53 | | simplrl 535 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ Q) |
| 54 | | prdisj 7559 |
. . . . . . 7
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑠 ∈ Q) →
¬ (𝑠 ∈
(1st ‘𝑦)
∧ 𝑠 ∈
(2nd ‘𝑦))) |
| 55 | 31, 53, 54 | syl2anc 411 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) → ¬ (𝑠 ∈ (1st
‘𝑦) ∧ 𝑠 ∈ (2nd
‘𝑦))) |
| 56 | 52, 55 | pm2.21fal 1384 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) ∧ (𝑤 ∈ ∩ (2nd “ 𝐴) ∧ 𝑤 <Q 𝑠)) →
⊥) |
| 57 | 25, 56 | rexlimddv 2619 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 ∈ (1st
‘𝑦)))) →
⊥) |
| 58 | 14, 57 | rexlimddv 2619 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝐵<P 𝑦) →
⊥) |
| 59 | 58 | inegd 1383 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ 𝐵<P 𝑦) |
| 60 | 59 | ralrimiva 2570 |
1
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ 𝐵<P 𝑦) |