ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub GIF version

Theorem suplocexprlemub 7724
Description: Lemma for suplocexpr 7726. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (šœ‘ ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
suplocexpr.ub (šœ‘ ā†’ āˆƒš‘„ āˆˆ P āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
suplocexpr.loc (šœ‘ ā†’ āˆ€š‘„ āˆˆ P āˆ€š‘¦ āˆˆ P (š‘„<P š‘¦ ā†’ (āˆƒš‘§ āˆˆ š“ š‘„<P š‘§ āˆØ āˆ€š‘§ āˆˆ š“ š‘§<P š‘¦)))
suplocexpr.b šµ = āŸØāˆŖ (1st ā€œ š“), {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}āŸ©
Assertion
Ref Expression
suplocexprlemub (šœ‘ ā†’ āˆ€š‘¦ āˆˆ š“ Ā¬ šµ<P š‘¦)
Distinct variable groups:   š‘¢,š“,š‘¤,š‘¦   š‘„,š“,š‘§,š‘¢,š‘¦   š‘¤,šµ   šœ‘,š‘¢,š‘¤,š‘¦   šœ‘,š‘„,š‘§   š‘§,š‘¤
Allowed substitution hints:   šµ(š‘„,š‘¦,š‘§,š‘¢)

Proof of Theorem suplocexprlemub
Dummy variables š‘  š‘” are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ šµ<P š‘¦)
2 suplocexpr.m . . . . . . . 8 (šœ‘ ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
3 suplocexpr.ub . . . . . . . 8 (šœ‘ ā†’ āˆƒš‘„ āˆˆ P āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
4 suplocexpr.loc . . . . . . . 8 (šœ‘ ā†’ āˆ€š‘„ āˆˆ P āˆ€š‘¦ āˆˆ P (š‘„<P š‘¦ ā†’ (āˆƒš‘§ āˆˆ š“ š‘„<P š‘§ āˆØ āˆ€š‘§ āˆˆ š“ š‘§<P š‘¦)))
5 suplocexpr.b . . . . . . . 8 šµ = āŸØāˆŖ (1st ā€œ š“), {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}āŸ©
62, 3, 4, 5suplocexprlemex 7723 . . . . . . 7 (šœ‘ ā†’ šµ āˆˆ P)
76ad2antrr 488 . . . . . 6 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ šµ āˆˆ P)
82, 3, 4suplocexprlemss 7716 . . . . . . . 8 (šœ‘ ā†’ š“ āŠ† P)
98ad2antrr 488 . . . . . . 7 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ š“ āŠ† P)
10 simplr 528 . . . . . . 7 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ š‘¦ āˆˆ š“)
119, 10sseldd 3158 . . . . . 6 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ š‘¦ āˆˆ P)
12 ltdfpr 7507 . . . . . 6 ((šµ āˆˆ P āˆ§ š‘¦ āˆˆ P) ā†’ (šµ<P š‘¦ ā†” āˆƒš‘  āˆˆ Q (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦))))
137, 11, 12syl2anc 411 . . . . 5 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ (šµ<P š‘¦ ā†” āˆƒš‘  āˆˆ Q (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦))))
141, 13mpbid 147 . . . 4 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ āˆƒš‘  āˆˆ Q (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))
15 simprrl 539 . . . . . . . 8 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ š‘  āˆˆ (2nd ā€˜šµ))
165suplocexprlem2b 7715 . . . . . . . . . . 11 (š“ āŠ† P ā†’ (2nd ā€˜šµ) = {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢})
178, 16syl 14 . . . . . . . . . 10 (šœ‘ ā†’ (2nd ā€˜šµ) = {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢})
1817eleq2d 2247 . . . . . . . . 9 (šœ‘ ā†’ (š‘  āˆˆ (2nd ā€˜šµ) ā†” š‘  āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}))
1918ad3antrrr 492 . . . . . . . 8 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ (š‘  āˆˆ (2nd ā€˜šµ) ā†” š‘  āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}))
2015, 19mpbid 147 . . . . . . 7 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ š‘  āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢})
21 breq2 4009 . . . . . . . . 9 (š‘¢ = š‘  ā†’ (š‘¤ <Q š‘¢ ā†” š‘¤ <Q š‘ ))
2221rexbidv 2478 . . . . . . . 8 (š‘¢ = š‘  ā†’ (āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢ ā†” āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘ ))
2322elrab 2895 . . . . . . 7 (š‘  āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢} ā†” (š‘  āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘ ))
2420, 23sylib 122 . . . . . 6 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ (š‘  āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘ ))
2524simprd 114 . . . . 5 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘ )
26 simprrr 540 . . . . . . . 8 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ š‘  āˆˆ (1st ā€˜š‘¦))
2726adantr 276 . . . . . . 7 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘  āˆˆ (1st ā€˜š‘¦))
28 simprr 531 . . . . . . . 8 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘¤ <Q š‘ )
2911ad2antrr 488 . . . . . . . . . 10 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘¦ āˆˆ P)
30 prop 7476 . . . . . . . . . 10 (š‘¦ āˆˆ P ā†’ āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ© āˆˆ P)
3129, 30syl 14 . . . . . . . . 9 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ© āˆˆ P)
32 eleq2 2241 . . . . . . . . . 10 (š‘” = (2nd ā€˜š‘¦) ā†’ (š‘¤ āˆˆ š‘” ā†” š‘¤ āˆˆ (2nd ā€˜š‘¦)))
33 simprl 529 . . . . . . . . . . 11 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘¤ āˆˆ āˆ© (2nd ā€œ š“))
34 vex 2742 . . . . . . . . . . . 12 š‘¤ āˆˆ V
3534elint2 3853 . . . . . . . . . . 11 (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) ā†” āˆ€š‘” āˆˆ (2nd ā€œ š“)š‘¤ āˆˆ š‘”)
3633, 35sylib 122 . . . . . . . . . 10 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ āˆ€š‘” āˆˆ (2nd ā€œ š“)š‘¤ āˆˆ š‘”)
37 fo2nd 6161 . . . . . . . . . . . . 13 2nd :Vā€“ontoā†’V
38 fofun 5441 . . . . . . . . . . . . 13 (2nd :Vā€“ontoā†’V ā†’ Fun 2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
40 vex 2742 . . . . . . . . . . . . 13 š‘¦ āˆˆ V
41 fof 5440 . . . . . . . . . . . . . . 15 (2nd :Vā€“ontoā†’V ā†’ 2nd :VāŸ¶V)
4237, 41ax-mp 5 . . . . . . . . . . . . . 14 2nd :VāŸ¶V
4342fdmi 5375 . . . . . . . . . . . . 13 dom 2nd = V
4440, 43eleqtrri 2253 . . . . . . . . . . . 12 š‘¦ āˆˆ dom 2nd
45 funfvima 5750 . . . . . . . . . . . 12 ((Fun 2nd āˆ§ š‘¦ āˆˆ dom 2nd ) ā†’ (š‘¦ āˆˆ š“ ā†’ (2nd ā€˜š‘¦) āˆˆ (2nd ā€œ š“)))
4639, 44, 45mp2an 426 . . . . . . . . . . 11 (š‘¦ āˆˆ š“ ā†’ (2nd ā€˜š‘¦) āˆˆ (2nd ā€œ š“))
4746ad4antlr 495 . . . . . . . . . 10 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ (2nd ā€˜š‘¦) āˆˆ (2nd ā€œ š“))
4832, 36, 47rspcdva 2848 . . . . . . . . 9 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘¤ āˆˆ (2nd ā€˜š‘¦))
49 prcunqu 7486 . . . . . . . . 9 ((āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ© āˆˆ P āˆ§ š‘¤ āˆˆ (2nd ā€˜š‘¦)) ā†’ (š‘¤ <Q š‘  ā†’ š‘  āˆˆ (2nd ā€˜š‘¦)))
5031, 48, 49syl2anc 411 . . . . . . . 8 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ (š‘¤ <Q š‘  ā†’ š‘  āˆˆ (2nd ā€˜š‘¦)))
5128, 50mpd 13 . . . . . . 7 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘  āˆˆ (2nd ā€˜š‘¦))
5227, 51jca 306 . . . . . 6 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ (š‘  āˆˆ (1st ā€˜š‘¦) āˆ§ š‘  āˆˆ (2nd ā€˜š‘¦)))
53 simplrl 535 . . . . . . 7 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ š‘  āˆˆ Q)
54 prdisj 7493 . . . . . . 7 ((āŸØ(1st ā€˜š‘¦), (2nd ā€˜š‘¦)āŸ© āˆˆ P āˆ§ š‘  āˆˆ Q) ā†’ Ā¬ (š‘  āˆˆ (1st ā€˜š‘¦) āˆ§ š‘  āˆˆ (2nd ā€˜š‘¦)))
5531, 53, 54syl2anc 411 . . . . . 6 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ Ā¬ (š‘  āˆˆ (1st ā€˜š‘¦) āˆ§ š‘  āˆˆ (2nd ā€˜š‘¦)))
5652, 55pm2.21fal 1373 . . . . 5 (((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) āˆ§ (š‘¤ āˆˆ āˆ© (2nd ā€œ š“) āˆ§ š‘¤ <Q š‘ )) ā†’ āŠ„)
5725, 56rexlimddv 2599 . . . 4 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) āˆ§ (š‘  āˆˆ Q āˆ§ (š‘  āˆˆ (2nd ā€˜šµ) āˆ§ š‘  āˆˆ (1st ā€˜š‘¦)))) ā†’ āŠ„)
5814, 57rexlimddv 2599 . . 3 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ šµ<P š‘¦) ā†’ āŠ„)
5958inegd 1372 . 2 ((šœ‘ āˆ§ š‘¦ āˆˆ š“) ā†’ Ā¬ šµ<P š‘¦)
6059ralrimiva 2550 1 (šœ‘ ā†’ āˆ€š‘¦ āˆˆ š“ Ā¬ šµ<P š‘¦)
Colors of variables: wff set class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   āˆ§ wa 104   ā†” wb 105   āˆØ wo 708   = wceq 1353  āŠ„wfal 1358  āˆƒwex 1492   āˆˆ wcel 2148  āˆ€wral 2455  āˆƒwrex 2456  {crab 2459  Vcvv 2739   āŠ† wss 3131  āŸØcop 3597  āˆŖ cuni 3811  āˆ© cint 3846   class class class wbr 4005  dom cdm 4628   ā€œ cima 4631  Fun wfun 5212  āŸ¶wf 5214  ā€“ontoā†’wfo 5216  ā€˜cfv 5218  1st c1st 6141  2nd c2nd 6142  Qcnq 7281   <Q cltq 7286  Pcnp 7292  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iltp 7471
This theorem is referenced by:  suplocexpr  7726
  Copyright terms: Public domain W3C validator