ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemub GIF version

Theorem suplocexprlemub 7906
Description: Lemma for suplocexpr 7908. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemub (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Distinct variable groups:   𝑢,𝐴,𝑤,𝑦   𝑥,𝐴,𝑧,𝑢,𝑦   𝑤,𝐵   𝜑,𝑢,𝑤,𝑦   𝜑,𝑥,𝑧   𝑧,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem suplocexprlemub
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵<P 𝑦)
2 suplocexpr.m . . . . . . . 8 (𝜑 → ∃𝑥 𝑥𝐴)
3 suplocexpr.ub . . . . . . . 8 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
4 suplocexpr.loc . . . . . . . 8 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
5 suplocexpr.b . . . . . . . 8 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
62, 3, 4, 5suplocexprlemex 7905 . . . . . . 7 (𝜑𝐵P)
76ad2antrr 488 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐵P)
82, 3, 4suplocexprlemss 7898 . . . . . . . 8 (𝜑𝐴P)
98ad2antrr 488 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝐴P)
10 simplr 528 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦𝐴)
119, 10sseldd 3225 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → 𝑦P)
12 ltdfpr 7689 . . . . . 6 ((𝐵P𝑦P) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
137, 11, 12syl2anc 411 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → (𝐵<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦))))
141, 13mpbid 147 . . . 4 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))
15 simprrl 539 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (2nd𝐵))
165suplocexprlem2b 7897 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
178, 16syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
1817eleq2d 2299 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
1918ad3antrrr 492 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠 ∈ (2nd𝐵) ↔ 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
2015, 19mpbid 147 . . . . . . 7 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
21 breq2 4086 . . . . . . . . 9 (𝑢 = 𝑠 → (𝑤 <Q 𝑢𝑤 <Q 𝑠))
2221rexbidv 2531 . . . . . . . 8 (𝑢 = 𝑠 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2322elrab 2959 . . . . . . 7 (𝑠 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2420, 23sylib 122 . . . . . 6 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → (𝑠Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠))
2524simprd 114 . . . . 5 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑠)
26 simprrr 540 . . . . . . . 8 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → 𝑠 ∈ (1st𝑦))
2726adantr 276 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (1st𝑦))
28 simprr 531 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 <Q 𝑠)
2911ad2antrr 488 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑦P)
30 prop 7658 . . . . . . . . . 10 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
32 eleq2 2293 . . . . . . . . . 10 (𝑡 = (2nd𝑦) → (𝑤𝑡𝑤 ∈ (2nd𝑦)))
33 simprl 529 . . . . . . . . . . 11 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 (2nd𝐴))
34 vex 2802 . . . . . . . . . . . 12 𝑤 ∈ V
3534elint2 3929 . . . . . . . . . . 11 (𝑤 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
3633, 35sylib 122 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ∀𝑡 ∈ (2nd𝐴)𝑤𝑡)
37 fo2nd 6302 . . . . . . . . . . . . 13 2nd :V–onto→V
38 fofun 5548 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
3937, 38ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
40 vex 2802 . . . . . . . . . . . . 13 𝑦 ∈ V
41 fof 5547 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
4237, 41ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
4342fdmi 5480 . . . . . . . . . . . . 13 dom 2nd = V
4440, 43eleqtrri 2305 . . . . . . . . . . . 12 𝑦 ∈ dom 2nd
45 funfvima 5870 . . . . . . . . . . . 12 ((Fun 2nd𝑦 ∈ dom 2nd ) → (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴)))
4639, 44, 45mp2an 426 . . . . . . . . . . 11 (𝑦𝐴 → (2nd𝑦) ∈ (2nd𝐴))
4746ad4antlr 495 . . . . . . . . . 10 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (2nd𝑦) ∈ (2nd𝐴))
4832, 36, 47rspcdva 2912 . . . . . . . . 9 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑤 ∈ (2nd𝑦))
49 prcunqu 7668 . . . . . . . . 9 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑤 ∈ (2nd𝑦)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5031, 48, 49syl2anc 411 . . . . . . . 8 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑤 <Q 𝑠𝑠 ∈ (2nd𝑦)))
5128, 50mpd 13 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠 ∈ (2nd𝑦))
5227, 51jca 306 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
53 simplrl 535 . . . . . . 7 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → 𝑠Q)
54 prdisj 7675 . . . . . . 7 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠Q) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5531, 53, 54syl2anc 411 . . . . . 6 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ¬ (𝑠 ∈ (1st𝑦) ∧ 𝑠 ∈ (2nd𝑦)))
5652, 55pm2.21fal 1415 . . . . 5 (((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) ∧ (𝑤 (2nd𝐴) ∧ 𝑤 <Q 𝑠)) → ⊥)
5725, 56rexlimddv 2653 . . . 4 ((((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝑦)))) → ⊥)
5814, 57rexlimddv 2653 . . 3 (((𝜑𝑦𝐴) ∧ 𝐵<P 𝑦) → ⊥)
5958inegd 1414 . 2 ((𝜑𝑦𝐴) → ¬ 𝐵<P 𝑦)
6059ralrimiva 2603 1 (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wfal 1400  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  wss 3197  cop 3669   cuni 3887   cint 3922   class class class wbr 4082  dom cdm 4718  cima 4721  Fun wfun 5311  wf 5313  ontowfo 5315  cfv 5317  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocexpr  7908
  Copyright terms: Public domain W3C validator