ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub GIF version

Theorem suplocexprlemlub 7686
Description: Lemma for suplocexpr 7687. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemlub (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑥,𝐴,𝑦   𝑧,𝐵   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑢)

Proof of Theorem suplocexprlemlub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝜑𝑦<P 𝐵) → 𝑦<P 𝐵)
2 ltrelpr 7467 . . . . . . . 8 <P ⊆ (P × P)
32brel 4663 . . . . . . 7 (𝑦<P 𝐵 → (𝑦P𝐵P))
43simpld 111 . . . . . 6 (𝑦<P 𝐵𝑦P)
54adantl 275 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝑦P)
63simprd 113 . . . . . 6 (𝑦<P 𝐵𝐵P)
76adantl 275 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝐵P)
8 ltdfpr 7468 . . . . 5 ((𝑦P𝐵P) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
95, 7, 8syl2anc 409 . . . 4 ((𝜑𝑦<P 𝐵) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
101, 9mpbid 146 . . 3 ((𝜑𝑦<P 𝐵) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))
11 simprrr 535 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (1st𝐵))
12 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1312fveq2i 5499 . . . . . . . . 9 (1st𝐵) = (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
14 npex 7435 . . . . . . . . . . . . 13 P ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑P ∈ V)
16 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
17 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
18 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1916, 17, 18suplocexprlemss 7677 . . . . . . . . . . . 12 (𝜑𝐴P)
2015, 19ssexd 4129 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
21 fo1st 6136 . . . . . . . . . . . . 13 1st :V–onto→V
22 fofun 5421 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun 1st
24 funimaexg 5282 . . . . . . . . . . . 12 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
2523, 24mpan 422 . . . . . . . . . . 11 (𝐴 ∈ V → (1st𝐴) ∈ V)
26 uniexg 4424 . . . . . . . . . . 11 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
2720, 25, 263syl 17 . . . . . . . . . 10 (𝜑 (1st𝐴) ∈ V)
28 nqex 7325 . . . . . . . . . . 11 Q ∈ V
2928rabex 4133 . . . . . . . . . 10 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
30 op1stg 6129 . . . . . . . . . 10 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3127, 29, 30sylancl 411 . . . . . . . . 9 (𝜑 → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3213, 31eqtrid 2215 . . . . . . . 8 (𝜑 → (1st𝐵) = (1st𝐴))
3332eleq2d 2240 . . . . . . 7 (𝜑 → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3433ad2antrr 485 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3511, 34mpbid 146 . . . . 5 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 (1st𝐴))
36 suplocexprlemell 7675 . . . . 5 (𝑠 (1st𝐴) ↔ ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
3735, 36sylib 121 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
38 simprl 526 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠Q)
3938ad2antrr 485 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠Q)
40 simprrl 534 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝑦))
4140ad2antrr 485 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (2nd𝑦))
42 simpr 109 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (1st𝑧))
43 rspe 2519 . . . . . . . 8 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
4439, 41, 42, 43syl12anc 1231 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
454ad4antlr 492 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦P)
4619ad4antr 491 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝐴P)
47 simplr 525 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧𝐴)
4846, 47sseldd 3148 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧P)
49 ltdfpr 7468 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5045, 48, 49syl2anc 409 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5144, 50mpbird 166 . . . . . 6 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦<P 𝑧)
5251ex 114 . . . . 5 ((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) → (𝑠 ∈ (1st𝑧) → 𝑦<P 𝑧))
5352reximdva 2572 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (∃𝑧𝐴 𝑠 ∈ (1st𝑧) → ∃𝑧𝐴 𝑦<P 𝑧))
5437, 53mpd 13 . . 3 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑦<P 𝑧)
5510, 54rexlimddv 2592 . 2 ((𝜑𝑦<P 𝐵) → ∃𝑧𝐴 𝑦<P 𝑧)
5655ex 114 1 (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  Vcvv 2730  wss 3121  cop 3586   cuni 3796   cint 3831   class class class wbr 3989  cima 4614  Fun wfun 5192  ontowfo 5196  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-qs 6519  df-ni 7266  df-nqqs 7310  df-inp 7428  df-iltp 7432
This theorem is referenced by:  suplocexpr  7687
  Copyright terms: Public domain W3C validator