ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub GIF version

Theorem suplocexprlemlub 7714
Description: Lemma for suplocexpr 7715. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemlub (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑥,𝐴,𝑦   𝑧,𝐵   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑢)

Proof of Theorem suplocexprlemlub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝑦<P 𝐵) → 𝑦<P 𝐵)
2 ltrelpr 7495 . . . . . . . 8 <P ⊆ (P × P)
32brel 4675 . . . . . . 7 (𝑦<P 𝐵 → (𝑦P𝐵P))
43simpld 112 . . . . . 6 (𝑦<P 𝐵𝑦P)
54adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝑦P)
63simprd 114 . . . . . 6 (𝑦<P 𝐵𝐵P)
76adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝐵P)
8 ltdfpr 7496 . . . . 5 ((𝑦P𝐵P) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
95, 7, 8syl2anc 411 . . . 4 ((𝜑𝑦<P 𝐵) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
101, 9mpbid 147 . . 3 ((𝜑𝑦<P 𝐵) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))
11 simprrr 540 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (1st𝐵))
12 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1312fveq2i 5514 . . . . . . . . 9 (1st𝐵) = (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
14 npex 7463 . . . . . . . . . . . . 13 P ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑P ∈ V)
16 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
17 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
18 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1916, 17, 18suplocexprlemss 7705 . . . . . . . . . . . 12 (𝜑𝐴P)
2015, 19ssexd 4140 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
21 fo1st 6152 . . . . . . . . . . . . 13 1st :V–onto→V
22 fofun 5435 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun 1st
24 funimaexg 5296 . . . . . . . . . . . 12 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
2523, 24mpan 424 . . . . . . . . . . 11 (𝐴 ∈ V → (1st𝐴) ∈ V)
26 uniexg 4436 . . . . . . . . . . 11 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
2720, 25, 263syl 17 . . . . . . . . . 10 (𝜑 (1st𝐴) ∈ V)
28 nqex 7353 . . . . . . . . . . 11 Q ∈ V
2928rabex 4144 . . . . . . . . . 10 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
30 op1stg 6145 . . . . . . . . . 10 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3127, 29, 30sylancl 413 . . . . . . . . 9 (𝜑 → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3213, 31eqtrid 2222 . . . . . . . 8 (𝜑 → (1st𝐵) = (1st𝐴))
3332eleq2d 2247 . . . . . . 7 (𝜑 → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3433ad2antrr 488 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3511, 34mpbid 147 . . . . 5 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 (1st𝐴))
36 suplocexprlemell 7703 . . . . 5 (𝑠 (1st𝐴) ↔ ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
3735, 36sylib 122 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
38 simprl 529 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠Q)
3938ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠Q)
40 simprrl 539 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝑦))
4140ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (2nd𝑦))
42 simpr 110 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (1st𝑧))
43 rspe 2526 . . . . . . . 8 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
4439, 41, 42, 43syl12anc 1236 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
454ad4antlr 495 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦P)
4619ad4antr 494 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝐴P)
47 simplr 528 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧𝐴)
4846, 47sseldd 3156 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧P)
49 ltdfpr 7496 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5045, 48, 49syl2anc 411 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5144, 50mpbird 167 . . . . . 6 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦<P 𝑧)
5251ex 115 . . . . 5 ((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) → (𝑠 ∈ (1st𝑧) → 𝑦<P 𝑧))
5352reximdva 2579 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (∃𝑧𝐴 𝑠 ∈ (1st𝑧) → ∃𝑧𝐴 𝑦<P 𝑧))
5437, 53mpd 13 . . 3 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑦<P 𝑧)
5510, 54rexlimddv 2599 . 2 ((𝜑𝑦<P 𝐵) → ∃𝑧𝐴 𝑦<P 𝑧)
5655ex 115 1 (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  {crab 2459  Vcvv 2737  wss 3129  cop 3594   cuni 3807   cint 3842   class class class wbr 4000  cima 4626  Fun wfun 5206  ontowfo 5210  cfv 5212  1st c1st 6133  2nd c2nd 6134  Qcnq 7270   <Q cltq 7275  Pcnp 7281  <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-qs 6535  df-ni 7294  df-nqqs 7338  df-inp 7456  df-iltp 7460
This theorem is referenced by:  suplocexpr  7715
  Copyright terms: Public domain W3C validator