ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub GIF version

Theorem suplocexprlemlub 7919
Description: Lemma for suplocexpr 7920. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemlub (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑥,𝐴,𝑦   𝑧,𝐵   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑢)

Proof of Theorem suplocexprlemlub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝑦<P 𝐵) → 𝑦<P 𝐵)
2 ltrelpr 7700 . . . . . . . 8 <P ⊆ (P × P)
32brel 4771 . . . . . . 7 (𝑦<P 𝐵 → (𝑦P𝐵P))
43simpld 112 . . . . . 6 (𝑦<P 𝐵𝑦P)
54adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝑦P)
63simprd 114 . . . . . 6 (𝑦<P 𝐵𝐵P)
76adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝐵P)
8 ltdfpr 7701 . . . . 5 ((𝑦P𝐵P) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
95, 7, 8syl2anc 411 . . . 4 ((𝜑𝑦<P 𝐵) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
101, 9mpbid 147 . . 3 ((𝜑𝑦<P 𝐵) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))
11 simprrr 540 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (1st𝐵))
12 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1312fveq2i 5632 . . . . . . . . 9 (1st𝐵) = (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
14 npex 7668 . . . . . . . . . . . . 13 P ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑P ∈ V)
16 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
17 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
18 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1916, 17, 18suplocexprlemss 7910 . . . . . . . . . . . 12 (𝜑𝐴P)
2015, 19ssexd 4224 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
21 fo1st 6309 . . . . . . . . . . . . 13 1st :V–onto→V
22 fofun 5551 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun 1st
24 funimaexg 5405 . . . . . . . . . . . 12 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
2523, 24mpan 424 . . . . . . . . . . 11 (𝐴 ∈ V → (1st𝐴) ∈ V)
26 uniexg 4530 . . . . . . . . . . 11 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
2720, 25, 263syl 17 . . . . . . . . . 10 (𝜑 (1st𝐴) ∈ V)
28 nqex 7558 . . . . . . . . . . 11 Q ∈ V
2928rabex 4228 . . . . . . . . . 10 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
30 op1stg 6302 . . . . . . . . . 10 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3127, 29, 30sylancl 413 . . . . . . . . 9 (𝜑 → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3213, 31eqtrid 2274 . . . . . . . 8 (𝜑 → (1st𝐵) = (1st𝐴))
3332eleq2d 2299 . . . . . . 7 (𝜑 → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3433ad2antrr 488 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3511, 34mpbid 147 . . . . 5 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 (1st𝐴))
36 suplocexprlemell 7908 . . . . 5 (𝑠 (1st𝐴) ↔ ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
3735, 36sylib 122 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
38 simprl 529 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠Q)
3938ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠Q)
40 simprrl 539 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝑦))
4140ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (2nd𝑦))
42 simpr 110 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (1st𝑧))
43 rspe 2579 . . . . . . . 8 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
4439, 41, 42, 43syl12anc 1269 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
454ad4antlr 495 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦P)
4619ad4antr 494 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝐴P)
47 simplr 528 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧𝐴)
4846, 47sseldd 3225 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧P)
49 ltdfpr 7701 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5045, 48, 49syl2anc 411 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5144, 50mpbird 167 . . . . . 6 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦<P 𝑧)
5251ex 115 . . . . 5 ((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) → (𝑠 ∈ (1st𝑧) → 𝑦<P 𝑧))
5352reximdva 2632 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (∃𝑧𝐴 𝑠 ∈ (1st𝑧) → ∃𝑧𝐴 𝑦<P 𝑧))
5437, 53mpd 13 . . 3 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑦<P 𝑧)
5510, 54rexlimddv 2653 . 2 ((𝜑𝑦<P 𝐵) → ∃𝑧𝐴 𝑦<P 𝑧)
5655ex 115 1 (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  wss 3197  cop 3669   cuni 3888   cint 3923   class class class wbr 4083  cima 4722  Fun wfun 5312  ontowfo 5316  cfv 5318  1st c1st 6290  2nd c2nd 6291  Qcnq 7475   <Q cltq 7480  Pcnp 7486  <P cltp 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-qs 6694  df-ni 7499  df-nqqs 7543  df-inp 7661  df-iltp 7665
This theorem is referenced by:  suplocexpr  7920
  Copyright terms: Public domain W3C validator