ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemlub GIF version

Theorem suplocexprlemlub 7808
Description: Lemma for suplocexpr 7809. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemlub (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑥,𝐴,𝑦   𝑧,𝐵   𝜑,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑤,𝑢)

Proof of Theorem suplocexprlemlub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝑦<P 𝐵) → 𝑦<P 𝐵)
2 ltrelpr 7589 . . . . . . . 8 <P ⊆ (P × P)
32brel 4716 . . . . . . 7 (𝑦<P 𝐵 → (𝑦P𝐵P))
43simpld 112 . . . . . 6 (𝑦<P 𝐵𝑦P)
54adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝑦P)
63simprd 114 . . . . . 6 (𝑦<P 𝐵𝐵P)
76adantl 277 . . . . 5 ((𝜑𝑦<P 𝐵) → 𝐵P)
8 ltdfpr 7590 . . . . 5 ((𝑦P𝐵P) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
95, 7, 8syl2anc 411 . . . 4 ((𝜑𝑦<P 𝐵) → (𝑦<P 𝐵 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵))))
101, 9mpbid 147 . . 3 ((𝜑𝑦<P 𝐵) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))
11 simprrr 540 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (1st𝐵))
12 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
1312fveq2i 5564 . . . . . . . . 9 (1st𝐵) = (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩)
14 npex 7557 . . . . . . . . . . . . 13 P ∈ V
1514a1i 9 . . . . . . . . . . . 12 (𝜑P ∈ V)
16 suplocexpr.m . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 𝑥𝐴)
17 suplocexpr.ub . . . . . . . . . . . . 13 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
18 suplocexpr.loc . . . . . . . . . . . . 13 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1916, 17, 18suplocexprlemss 7799 . . . . . . . . . . . 12 (𝜑𝐴P)
2015, 19ssexd 4174 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
21 fo1st 6224 . . . . . . . . . . . . 13 1st :V–onto→V
22 fofun 5484 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
2321, 22ax-mp 5 . . . . . . . . . . . 12 Fun 1st
24 funimaexg 5343 . . . . . . . . . . . 12 ((Fun 1st𝐴 ∈ V) → (1st𝐴) ∈ V)
2523, 24mpan 424 . . . . . . . . . . 11 (𝐴 ∈ V → (1st𝐴) ∈ V)
26 uniexg 4475 . . . . . . . . . . 11 ((1st𝐴) ∈ V → (1st𝐴) ∈ V)
2720, 25, 263syl 17 . . . . . . . . . 10 (𝜑 (1st𝐴) ∈ V)
28 nqex 7447 . . . . . . . . . . 11 Q ∈ V
2928rabex 4178 . . . . . . . . . 10 {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V
30 op1stg 6217 . . . . . . . . . 10 (( (1st𝐴) ∈ V ∧ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ∈ V) → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3127, 29, 30sylancl 413 . . . . . . . . 9 (𝜑 → (1st ‘⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩) = (1st𝐴))
3213, 31eqtrid 2241 . . . . . . . 8 (𝜑 → (1st𝐵) = (1st𝐴))
3332eleq2d 2266 . . . . . . 7 (𝜑 → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3433ad2antrr 488 . . . . . 6 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (𝑠 ∈ (1st𝐵) ↔ 𝑠 (1st𝐴)))
3511, 34mpbid 147 . . . . 5 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 (1st𝐴))
36 suplocexprlemell 7797 . . . . 5 (𝑠 (1st𝐴) ↔ ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
3735, 36sylib 122 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑠 ∈ (1st𝑧))
38 simprl 529 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠Q)
3938ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠Q)
40 simprrl 539 . . . . . . . . 9 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝑦))
4140ad2antrr 488 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (2nd𝑦))
42 simpr 110 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑠 ∈ (1st𝑧))
43 rspe 2546 . . . . . . . 8 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
4439, 41, 42, 43syl12anc 1247 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧)))
454ad4antlr 495 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦P)
4619ad4antr 494 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝐴P)
47 simplr 528 . . . . . . . . 9 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧𝐴)
4846, 47sseldd 3185 . . . . . . . 8 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑧P)
49 ltdfpr 7590 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5045, 48, 49syl2anc 411 . . . . . . 7 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → (𝑦<P 𝑧 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝑧))))
5144, 50mpbird 167 . . . . . 6 (((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) ∧ 𝑠 ∈ (1st𝑧)) → 𝑦<P 𝑧)
5251ex 115 . . . . 5 ((((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) ∧ 𝑧𝐴) → (𝑠 ∈ (1st𝑧) → 𝑦<P 𝑧))
5352reximdva 2599 . . . 4 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → (∃𝑧𝐴 𝑠 ∈ (1st𝑧) → ∃𝑧𝐴 𝑦<P 𝑧))
5437, 53mpd 13 . . 3 (((𝜑𝑦<P 𝐵) ∧ (𝑠Q ∧ (𝑠 ∈ (2nd𝑦) ∧ 𝑠 ∈ (1st𝐵)))) → ∃𝑧𝐴 𝑦<P 𝑧)
5510, 54rexlimddv 2619 . 2 ((𝜑𝑦<P 𝐵) → ∃𝑧𝐴 𝑦<P 𝑧)
5655ex 115 1 (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  cop 3626   cuni 3840   cint 3875   class class class wbr 4034  cima 4667  Fun wfun 5253  ontowfo 5257  cfv 5259  1st c1st 6205  2nd c2nd 6206  Qcnq 7364   <Q cltq 7369  Pcnp 7375  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-qs 6607  df-ni 7388  df-nqqs 7432  df-inp 7550  df-iltp 7554
This theorem is referenced by:  suplocexpr  7809
  Copyright terms: Public domain W3C validator