Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → 𝑦<P 𝐵) |
2 | | ltrelpr 7446 |
. . . . . . . 8
⊢
<P ⊆ (P ×
P) |
3 | 2 | brel 4656 |
. . . . . . 7
⊢ (𝑦<P
𝐵 → (𝑦 ∈ P ∧
𝐵 ∈
P)) |
4 | 3 | simpld 111 |
. . . . . 6
⊢ (𝑦<P
𝐵 → 𝑦 ∈ P) |
5 | 4 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → 𝑦 ∈ P) |
6 | 3 | simprd 113 |
. . . . . 6
⊢ (𝑦<P
𝐵 → 𝐵 ∈ P) |
7 | 6 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → 𝐵 ∈ P) |
8 | | ltdfpr 7447 |
. . . . 5
⊢ ((𝑦 ∈ P ∧
𝐵 ∈ P)
→ (𝑦<P 𝐵 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) |
9 | 5, 7, 8 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → (𝑦<P 𝐵 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) |
10 | 1, 9 | mpbid 146 |
. . 3
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵))) |
11 | | simprrr 530 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) → 𝑠 ∈ (1st
‘𝐵)) |
12 | | suplocexpr.b |
. . . . . . . . . 10
⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
13 | 12 | fveq2i 5489 |
. . . . . . . . 9
⊢
(1st ‘𝐵) = (1st ‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) |
14 | | npex 7414 |
. . . . . . . . . . . . 13
⊢
P ∈ V |
15 | 14 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → P ∈
V) |
16 | | suplocexpr.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
17 | | suplocexpr.ub |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
18 | | suplocexpr.loc |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
19 | 16, 17, 18 | suplocexprlemss 7656 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ P) |
20 | 15, 19 | ssexd 4122 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ V) |
21 | | fo1st 6125 |
. . . . . . . . . . . . 13
⊢
1st :V–onto→V |
22 | | fofun 5411 |
. . . . . . . . . . . . 13
⊢
(1st :V–onto→V → Fun 1st ) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun
1st |
24 | | funimaexg 5272 |
. . . . . . . . . . . 12
⊢ ((Fun
1st ∧ 𝐴
∈ V) → (1st “ 𝐴) ∈ V) |
25 | 23, 24 | mpan 421 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (1st
“ 𝐴) ∈
V) |
26 | | uniexg 4417 |
. . . . . . . . . . 11
⊢
((1st “ 𝐴) ∈ V → ∪ (1st “ 𝐴) ∈ V) |
27 | 20, 25, 26 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ (1st “ 𝐴) ∈ V) |
28 | | nqex 7304 |
. . . . . . . . . . 11
⊢
Q ∈ V |
29 | 28 | rabex 4126 |
. . . . . . . . . 10
⊢ {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V |
30 | | op1stg 6118 |
. . . . . . . . . 10
⊢ ((∪ (1st “ 𝐴) ∈ V ∧ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢} ∈ V) →
(1st ‘〈∪ (1st
“ 𝐴), {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = ∪ (1st “ 𝐴)) |
31 | 27, 29, 30 | sylancl 410 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉) = ∪ (1st “ 𝐴)) |
32 | 13, 31 | syl5eq 2211 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐵) = ∪ (1st “ 𝐴)) |
33 | 32 | eleq2d 2236 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ (1st ‘𝐵) ↔ 𝑠 ∈ ∪
(1st “ 𝐴))) |
34 | 33 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) → (𝑠 ∈ (1st
‘𝐵) ↔ 𝑠 ∈ ∪ (1st “ 𝐴))) |
35 | 11, 34 | mpbid 146 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) → 𝑠 ∈ ∪ (1st “ 𝐴)) |
36 | | suplocexprlemell 7654 |
. . . . 5
⊢ (𝑠 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑠 ∈ (1st ‘𝑧)) |
37 | 35, 36 | sylib 121 |
. . . 4
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) →
∃𝑧 ∈ 𝐴 𝑠 ∈ (1st ‘𝑧)) |
38 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) → 𝑠 ∈
Q) |
39 | 38 | ad2antrr 480 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑠 ∈ Q) |
40 | | simprrl 529 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) → 𝑠 ∈ (2nd
‘𝑦)) |
41 | 40 | ad2antrr 480 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑠 ∈ (2nd ‘𝑦)) |
42 | | simpr 109 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑠 ∈ (1st ‘𝑧)) |
43 | | rspe 2515 |
. . . . . . . 8
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝑧))) →
∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑦)
∧ 𝑠 ∈
(1st ‘𝑧))) |
44 | 39, 41, 42, 43 | syl12anc 1226 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝑧))) |
45 | 4 | ad4antlr 487 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑦 ∈ P) |
46 | 19 | ad4antr 486 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝐴 ⊆ P) |
47 | | simplr 520 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑧 ∈ 𝐴) |
48 | 46, 47 | sseldd 3143 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑧 ∈ P) |
49 | | ltdfpr 7447 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦<P 𝑧 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝑧)))) |
50 | 45, 48, 49 | syl2anc 409 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → (𝑦<P 𝑧 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝑧)))) |
51 | 44, 50 | mpbird 166 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦<P
𝐵) ∧ (𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑠 ∈ (1st ‘𝑧)) → 𝑦<P 𝑧) |
52 | 51 | ex 114 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) ∧ 𝑧 ∈ 𝐴) → (𝑠 ∈ (1st ‘𝑧) → 𝑦<P 𝑧)) |
53 | 52 | reximdva 2568 |
. . . 4
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) →
(∃𝑧 ∈ 𝐴 𝑠 ∈ (1st ‘𝑧) → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |
54 | 37, 53 | mpd 13 |
. . 3
⊢ (((𝜑 ∧ 𝑦<P 𝐵) ∧ (𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑦) ∧ 𝑠 ∈ (1st
‘𝐵)))) →
∃𝑧 ∈ 𝐴 𝑦<P 𝑧) |
55 | 10, 54 | rexlimddv 2588 |
. 2
⊢ ((𝜑 ∧ 𝑦<P 𝐵) → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧) |
56 | 55 | ex 114 |
1
⊢ (𝜑 → (𝑦<P 𝐵 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) |