Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad3antlr | GIF version |
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad3antlr | ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad2antlr 481 | . 2 ⊢ (((𝜒 ∧ 𝜑) ∧ 𝜃) → 𝜓) |
3 | 2 | adantr 274 | 1 ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad4antlr 487 nntr2 6471 phpm 6831 phplem4on 6833 fidifsnen 6836 fisbth 6849 fin0 6851 fin0or 6852 fiintim 6894 fisseneq 6897 djudom 7058 difinfsnlem 7064 nnnninfeq 7092 nnnninfeq2 7093 enomnilem 7102 enmkvlem 7125 enwomnilem 7133 prmuloc 7507 cauappcvgprlemopl 7587 cauappcvgprlemdisj 7592 cauappcvgprlemladdfl 7596 caucvgprlemopl 7610 axcaucvglemcau 7839 xnn0letri 9739 xaddf 9780 xleaddadd 9823 ssfzo12bi 10160 rebtwn2zlemstep 10188 btwnzge0 10235 addmodlteq 10333 frecuzrdgg 10351 qsqeqor 10565 apexp1 10631 hashxp 10739 cjap 10848 caucvgre 10923 minmax 11171 xrminmax 11206 sumeq2 11300 fsumconst 11395 ntrivcvgap 11489 prodeq2 11498 p1modz1 11734 bezoutlemmain 11931 dfgcd2 11947 uzwodc 11970 lcmgcdlem 12009 cnpnei 12859 cnntr 12865 txmetcnp 13158 lgsval 13545 pw1nct 13883 peano4nninf 13886 |
Copyright terms: Public domain | W3C validator |