![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad3antlr | GIF version |
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad3antlr | ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad2antlr 476 | . 2 ⊢ (((𝜒 ∧ 𝜑) ∧ 𝜃) → 𝜓) |
3 | 2 | adantr 272 | 1 ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad4antlr 482 nntr2 6329 phpm 6688 phplem4on 6690 fidifsnen 6693 fisbth 6706 fin0 6708 fin0or 6709 fiintim 6746 fisseneq 6749 djudom 6893 difinfsnlem 6899 enomnilem 6922 prmuloc 7275 cauappcvgprlemopl 7355 cauappcvgprlemdisj 7360 cauappcvgprlemladdfl 7364 caucvgprlemopl 7378 axcaucvglemcau 7583 xaddf 9468 xleaddadd 9511 ssfzo12bi 9843 rebtwn2zlemstep 9871 btwnzge0 9914 addmodlteq 10012 frecuzrdgg 10030 hashxp 10413 cjap 10519 caucvgre 10593 minmax 10840 xrminmax 10873 sumeq2 10967 fsumconst 11062 bezoutlemmain 11479 dfgcd2 11495 lcmgcdlem 11551 cnpnei 12169 cnntr 12175 peano4nninf 12784 nninfalllemn 12786 |
Copyright terms: Public domain | W3C validator |