Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad3antlr | GIF version |
Description: Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad3antlr | ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ad2antlr 486 | . 2 ⊢ (((𝜒 ∧ 𝜑) ∧ 𝜃) → 𝜓) |
3 | 2 | adantr 274 | 1 ⊢ ((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad4antlr 492 nntr2 6482 phpm 6843 phplem4on 6845 fidifsnen 6848 fisbth 6861 fin0 6863 fin0or 6864 fiintim 6906 fisseneq 6909 djudom 7070 difinfsnlem 7076 nnnninfeq 7104 nnnninfeq2 7105 enomnilem 7114 enmkvlem 7137 enwomnilem 7145 prmuloc 7528 cauappcvgprlemopl 7608 cauappcvgprlemdisj 7613 cauappcvgprlemladdfl 7617 caucvgprlemopl 7631 axcaucvglemcau 7860 xnn0letri 9760 xaddf 9801 xleaddadd 9844 ssfzo12bi 10181 rebtwn2zlemstep 10209 btwnzge0 10256 addmodlteq 10354 frecuzrdgg 10372 qsqeqor 10586 apexp1 10652 hashxp 10761 cjap 10870 caucvgre 10945 minmax 11193 xrminmax 11228 sumeq2 11322 fsumconst 11417 ntrivcvgap 11511 prodeq2 11520 p1modz1 11756 bezoutlemmain 11953 dfgcd2 11969 uzwodc 11992 lcmgcdlem 12031 cnpnei 13013 cnntr 13019 txmetcnp 13312 lgsval 13699 pw1nct 14036 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |