ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2a GIF version

Theorem dfco2a 5166
Description: Generalization of dfco2 5165, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem dfco2a
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 5165 . 2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
2 vex 2763 . . . . . . . . . . . . . 14 𝑥 ∈ V
3 vex 2763 . . . . . . . . . . . . . . 15 𝑧 ∈ V
43eliniseg 5035 . . . . . . . . . . . . . 14 (𝑥 ∈ V → (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥))
52, 4ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥)
63, 2brelrn 4895 . . . . . . . . . . . . 13 (𝑧𝐵𝑥𝑥 ∈ ran 𝐵)
75, 6sylbi 121 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵 “ {𝑥}) → 𝑥 ∈ ran 𝐵)
8 vex 2763 . . . . . . . . . . . . . 14 𝑤 ∈ V
92, 8elimasn 5032 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐴)
102, 8opeldm 4865 . . . . . . . . . . . . 13 (⟨𝑥, 𝑤⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
119, 10sylbi 121 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴 “ {𝑥}) → 𝑥 ∈ dom 𝐴)
127, 11anim12ci 339 . . . . . . . . . . 11 ((𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1312adantl 277 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1413exlimivv 1908 . . . . . . . . 9 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
15 elxp 4676 . . . . . . . . 9 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))))
16 elin 3342 . . . . . . . . 9 (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1714, 15, 163imtr4i 201 . . . . . . . 8 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∩ ran 𝐵))
18 ssel 3173 . . . . . . . 8 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) → 𝑥𝐶))
1917, 18syl5 32 . . . . . . 7 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥𝐶))
2019pm4.71rd 394 . . . . . 6 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
2120exbidv 1836 . . . . 5 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
22 rexv 2778 . . . . 5 (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
23 df-rex 2478 . . . . 5 (∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2421, 22, 233bitr4g 223 . . . 4 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
25 eliun 3916 . . . 4 (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
26 eliun 3916 . . . 4 (𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
2724, 25, 263bitr4g 223 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ 𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2827eqrdv 2191 . 2 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
291, 28eqtrid 2238 1 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wrex 2473  Vcvv 2760  cin 3152  wss 3153  {csn 3618  cop 3621   ciun 3912   class class class wbr 4029   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  cima 4662  ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator