Step | Hyp | Ref
| Expression |
1 | | dfco2 5103 |
. 2
⊢ (𝐴 ∘ 𝐵) = ∪
𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) |
2 | | vex 2729 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
3 | | vex 2729 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
4 | 3 | eliniseg 4974 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ V → (𝑧 ∈ (◡𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥)) |
5 | 2, 4 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (◡𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥) |
6 | 3, 2 | brelrn 4837 |
. . . . . . . . . . . . 13
⊢ (𝑧𝐵𝑥 → 𝑥 ∈ ran 𝐵) |
7 | 5, 6 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (◡𝐵 “ {𝑥}) → 𝑥 ∈ ran 𝐵) |
8 | | vex 2729 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
9 | 2, 8 | elimasn 4971 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑤〉 ∈ 𝐴) |
10 | 2, 8 | opeldm 4807 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑤〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
11 | 9, 10 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝐴 “ {𝑥}) → 𝑥 ∈ dom 𝐴) |
12 | 7, 11 | anim12ci 337 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (◡𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})) → (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵)) |
13 | 12 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑦 = 〈𝑧, 𝑤〉 ∧ (𝑧 ∈ (◡𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵)) |
14 | 13 | exlimivv 1884 |
. . . . . . . . 9
⊢
(∃𝑧∃𝑤(𝑦 = 〈𝑧, 𝑤〉 ∧ (𝑧 ∈ (◡𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵)) |
15 | | elxp 4621 |
. . . . . . . . 9
⊢ (𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑧∃𝑤(𝑦 = 〈𝑧, 𝑤〉 ∧ (𝑧 ∈ (◡𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})))) |
16 | | elin 3305 |
. . . . . . . . 9
⊢ (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵)) |
17 | 14, 15, 16 | 3imtr4i 200 |
. . . . . . . 8
⊢ (𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∩ ran 𝐵)) |
18 | | ssel 3136 |
. . . . . . . 8
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) → 𝑥 ∈ 𝐶)) |
19 | 17, 18 | syl5 32 |
. . . . . . 7
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ 𝐶)) |
20 | 19 | pm4.71rd 392 |
. . . . . 6
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))) |
21 | 20 | exbidv 1813 |
. . . . 5
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))) |
22 | | rexv 2744 |
. . . . 5
⊢
(∃𝑥 ∈ V
𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) |
23 | | df-rex 2450 |
. . . . 5
⊢
(∃𝑥 ∈
𝐶 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))) |
24 | 21, 22, 23 | 3bitr4g 222 |
. . . 4
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 ∈ V 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ 𝐶 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))) |
25 | | eliun 3870 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) |
26 | | eliun 3870 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ 𝐶 𝑦 ∈ ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) |
27 | 24, 25, 26 | 3bitr4g 222 |
. . 3
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ∪
𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))) |
28 | 27 | eqrdv 2163 |
. 2
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → ∪
𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) = ∪
𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) |
29 | 1, 28 | syl5eq 2211 |
1
⊢ ((dom
𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪
𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) |