Proof of Theorem difelfznle
| Step | Hyp | Ref
| Expression |
| 1 | | elfz2nn0 10204 |
. . . . . 6
⊢ (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁)) |
| 2 | | nn0addcl 9301 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈
ℕ0) |
| 3 | 2 | nn0zd 9463 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈ ℤ) |
| 4 | 3 | 3adant3 1019 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 + 𝑁) ∈ ℤ) |
| 5 | 1, 4 | sylbi 121 |
. . . . 5
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ) |
| 6 | | elfzelz 10117 |
. . . . 5
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) |
| 7 | | zsubcl 9384 |
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) |
| 8 | 5, 6, 7 | syl2anr 290 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) |
| 9 | 8 | 3adant3 1019 |
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) |
| 10 | 6 | zred 9465 |
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) |
| 11 | 10 | adantr 276 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ) |
| 12 | | elfzel2 10115 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ) |
| 13 | 12 | zred 9465 |
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ) |
| 14 | 13 | adantr 276 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ) |
| 15 | | nn0readdcl 9325 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈ ℝ) |
| 16 | 15 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 + 𝑁) ∈ ℝ) |
| 17 | 1, 16 | sylbi 121 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ) |
| 18 | 17 | adantl 277 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ) |
| 19 | | elfzle2 10120 |
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) |
| 20 | | elfzle1 10119 |
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀) |
| 21 | | nn0re 9275 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 22 | | nn0re 9275 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 23 | 21, 22 | anim12ci 339 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 24 | 23 | 3adant3 1019 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
| 25 | 1, 24 | sylbi 121 |
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 26 | | addge02 8517 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤
𝑀 ↔ 𝑁 ≤ (𝑀 + 𝑁))) |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀 ↔ 𝑁 ≤ (𝑀 + 𝑁))) |
| 28 | 20, 27 | mpbid 147 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁)) |
| 29 | 19, 28 | anim12i 338 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁))) |
| 30 | | letr 8126 |
. . . . . . 7
⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))) |
| 31 | 30 | imp 124 |
. . . . . 6
⊢ (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁)) |
| 32 | 11, 14, 18, 29, 31 | syl31anc 1252 |
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)) |
| 33 | 32 | 3adant3 1019 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝐾 ≤ (𝑀 + 𝑁)) |
| 34 | | zre 9347 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℝ) |
| 35 | 21, 22 | anim12i 338 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 36 | 35 | 3adant3 1019 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈
ℝ)) |
| 37 | 1, 36 | sylbi 121 |
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 38 | | readdcl 8022 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ) |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ) |
| 40 | 34, 39 | anim12ci 339 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) |
| 41 | 6, 40 | sylan 283 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) |
| 42 | 41 | 3adant3 1019 |
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) |
| 43 | | subge0 8519 |
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁))) |
| 44 | 42, 43 | syl 14 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁))) |
| 45 | 33, 44 | mpbird 167 |
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾)) |
| 46 | | elnn0z 9356 |
. . 3
⊢ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾))) |
| 47 | 9, 45, 46 | sylanbrc 417 |
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈
ℕ0) |
| 48 | | elfz3nn0 10207 |
. . 3
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) |
| 49 | 48 | 3ad2ant1 1020 |
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝑁 ∈
ℕ0) |
| 50 | | elfzelz 10117 |
. . . . . 6
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) |
| 51 | | zltnle 9389 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀)) |
| 52 | 51 | ancoms 268 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀)) |
| 53 | | zre 9347 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 54 | | ltle 8131 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 → 𝑀 ≤ 𝐾)) |
| 55 | 53, 34, 54 | syl2anr 290 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → 𝑀 ≤ 𝐾)) |
| 56 | 52, 55 | sylbird 170 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬
𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾)) |
| 57 | 6, 50, 56 | syl2an 289 |
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾)) |
| 58 | 57 | 3impia 1202 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝑀 ≤ 𝐾) |
| 59 | 50 | zred 9465 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ) |
| 60 | 59 | adantl 277 |
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ) |
| 61 | 60, 11, 14 | leadd1d 8583 |
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 ≤ 𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) |
| 62 | 61 | 3adant3 1019 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (𝑀 ≤ 𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) |
| 63 | 58, 62 | mpbid 147 |
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)) |
| 64 | 18, 11, 14 | lesubadd2d 8588 |
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) |
| 65 | 64 | 3adant3 1019 |
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) |
| 66 | 63, 65 | mpbird 167 |
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁) |
| 67 | | elfz2nn0 10204 |
. 2
⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)) |
| 68 | 47, 49, 66, 67 | syl3anbrc 1183 |
1
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) |