ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle GIF version

Theorem difelfznle 9880
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 9860 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 nn0addcl 8980 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
32nn0zd 9139 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
433adant3 986 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℤ)
51, 4sylbi 120 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ)
6 elfzelz 9774 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
7 zsubcl 9063 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
85, 6, 7syl2anr 288 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
983adant3 986 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
106zred 9141 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
1110adantr 274 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
12 elfzel2 9772 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1312zred 9141 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1413adantr 274 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
15 nn0readdcl 9004 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
16153adant3 986 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℝ)
171, 16sylbi 120 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
1817adantl 275 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
19 elfzle2 9776 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
20 elfzle1 9775 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
21 nn0re 8954 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
22 nn0re 8954 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2321, 22anim12ci 337 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233adant3 986 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
251, 24sylbi 120 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
26 addge02 8203 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2725, 26syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2820, 27mpbid 146 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
2919, 28anim12i 336 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)))
30 letr 7815 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)))
3130imp 123 . . . . . 6 (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁))
3211, 14, 18, 29, 31syl31anc 1204 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))
33323adant3 986 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝐾 ≤ (𝑀 + 𝑁))
34 zre 9026 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3521, 22anim12i 336 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36353adant3 986 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
371, 36sylbi 120 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 readdcl 7714 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ)
3937, 38syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
4034, 39anim12ci 337 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
416, 40sylan 281 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
42413adant3 986 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
43 subge0 8205 . . . . 5 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4442, 43syl 14 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4533, 44mpbird 166 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾))
46 elnn0z 9035 . . 3 (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾)))
479, 45, 46sylanbrc 413 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℕ0)
48 elfz3nn0 9863 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
49483ad2ant1 987 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑁 ∈ ℕ0)
50 elfzelz 9774 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
51 zltnle 9068 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
5251ancoms 266 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
53 zre 9026 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54 ltle 7819 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5553, 34, 54syl2anr 288 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾𝑀𝐾))
5652, 55sylbird 169 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬ 𝐾𝑀𝑀𝐾))
576, 50, 56syl2an 287 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾𝑀𝑀𝐾))
58573impia 1163 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑀𝐾)
5950zred 9141 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ)
6059adantl 275 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
6160, 11, 14leadd1d 8269 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
62613adant3 986 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6358, 62mpbid 146 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))
6418, 11, 14lesubadd2d 8274 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
65643adant3 986 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6663, 65mpbird 166 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)
67 elfz2nn0 9860 . 2 (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁))
6847, 49, 66, 67syl3anbrc 1150 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 947  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587  0cc0 7588   + caddc 7591   < clt 7768  cle 7769  cmin 7901  0cn0 8945  cz 9022  ...cfz 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator