ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle GIF version

Theorem difelfznle 10148
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 10125 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 nn0addcl 9224 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
32nn0zd 9386 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
433adant3 1018 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℤ)
51, 4sylbi 121 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ)
6 elfzelz 10038 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
7 zsubcl 9307 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
85, 6, 7syl2anr 290 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
983adant3 1018 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ)
106zred 9388 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
1110adantr 276 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
12 elfzel2 10036 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1312zred 9388 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
1413adantr 276 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
15 nn0readdcl 9248 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℝ)
16153adant3 1018 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 + 𝑁) ∈ ℝ)
171, 16sylbi 121 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
1817adantl 277 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ)
19 elfzle2 10041 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
20 elfzle1 10040 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
21 nn0re 9198 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
22 nn0re 9198 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2321, 22anim12ci 339 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233adant3 1018 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
251, 24sylbi 121 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
26 addge02 8443 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2725, 26syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀𝑁 ≤ (𝑀 + 𝑁)))
2820, 27mpbid 147 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁))
2919, 28anim12i 338 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)))
30 letr 8053 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾𝑁𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)))
3130imp 124 . . . . . 6 (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾𝑁𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁))
3211, 14, 18, 29, 31syl31anc 1251 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))
33323adant3 1018 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝐾 ≤ (𝑀 + 𝑁))
34 zre 9270 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3521, 22anim12i 338 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36353adant3 1018 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
371, 36sylbi 121 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 readdcl 7950 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ)
3937, 38syl 14 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ)
4034, 39anim12ci 339 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
416, 40sylan 283 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
42413adant3 1018 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ))
43 subge0 8445 . . . . 5 (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4442, 43syl 14 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁)))
4533, 44mpbird 167 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾))
46 elnn0z 9279 . . 3 (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾)))
479, 45, 46sylanbrc 417 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℕ0)
48 elfz3nn0 10128 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
49483ad2ant1 1019 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑁 ∈ ℕ0)
50 elfzelz 10038 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
51 zltnle 9312 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
5251ancoms 268 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾𝑀))
53 zre 9270 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54 ltle 8058 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾𝑀𝐾))
5553, 34, 54syl2anr 290 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾𝑀𝐾))
5652, 55sylbird 170 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬ 𝐾𝑀𝑀𝐾))
576, 50, 56syl2an 289 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾𝑀𝑀𝐾))
58573impia 1201 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → 𝑀𝐾)
5950zred 9388 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ)
6059adantl 277 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
6160, 11, 14leadd1d 8509 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
62613adant3 1018 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6358, 62mpbid 147 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))
6418, 11, 14lesubadd2d 8514 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
65643adant3 1018 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)))
6663, 65mpbird 167 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)
67 elfz2nn0 10125 . 2 (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁))
6847, 49, 66, 67syl3anbrc 1182 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 979  wcel 2158   class class class wbr 4015  (class class class)co 5888  cr 7823  0cc0 7824   + caddc 7827   < clt 8005  cle 8006  cmin 8141  0cn0 9189  cz 9266  ...cfz 10021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator