Proof of Theorem difelfznle
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elfz2nn0 10187 | 
. . . . . 6
⊢ (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁)) | 
| 2 |   | nn0addcl 9284 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈
ℕ0) | 
| 3 | 2 | nn0zd 9446 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈ ℤ) | 
| 4 | 3 | 3adant3 1019 | 
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 + 𝑁) ∈ ℤ) | 
| 5 | 1, 4 | sylbi 121 | 
. . . . 5
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℤ) | 
| 6 |   | elfzelz 10100 | 
. . . . 5
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | 
| 7 |   | zsubcl 9367 | 
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) | 
| 8 | 5, 6, 7 | syl2anr 290 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) | 
| 9 | 8 | 3adant3 1019 | 
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ ℤ) | 
| 10 | 6 | zred 9448 | 
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) | 
| 11 | 10 | adantr 276 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ) | 
| 12 |   | elfzel2 10098 | 
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | 
| 13 | 12 | zred 9448 | 
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ) | 
| 14 | 13 | adantr 276 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℝ) | 
| 15 |   | nn0readdcl 9308 | 
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 + 𝑁) ∈ ℝ) | 
| 16 | 15 | 3adant3 1019 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 + 𝑁) ∈ ℝ) | 
| 17 | 1, 16 | sylbi 121 | 
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ) | 
| 18 | 17 | adantl 277 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 𝑁) ∈ ℝ) | 
| 19 |   | elfzle2 10103 | 
. . . . . . 7
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) | 
| 20 |   | elfzle1 10102 | 
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀) | 
| 21 |   | nn0re 9258 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) | 
| 22 |   | nn0re 9258 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) | 
| 23 | 21, 22 | anim12ci 339 | 
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) | 
| 24 | 23 | 3adant3 1019 | 
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈
ℝ)) | 
| 25 | 1, 24 | sylbi 121 | 
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) | 
| 26 |   | addge02 8500 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤
𝑀 ↔ 𝑁 ≤ (𝑀 + 𝑁))) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → (0 ≤ 𝑀 ↔ 𝑁 ≤ (𝑀 + 𝑁))) | 
| 28 | 20, 27 | mpbid 147 | 
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → 𝑁 ≤ (𝑀 + 𝑁)) | 
| 29 | 19, 28 | anim12i 338 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁))) | 
| 30 |   | letr 8109 | 
. . . . . . 7
⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁)) → 𝐾 ≤ (𝑀 + 𝑁))) | 
| 31 | 30 | imp 124 | 
. . . . . 6
⊢ (((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) ∧ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ (𝑀 + 𝑁))) → 𝐾 ≤ (𝑀 + 𝑁)) | 
| 32 | 11, 14, 18, 29, 31 | syl31anc 1252 | 
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ≤ (𝑀 + 𝑁)) | 
| 33 | 32 | 3adant3 1019 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝐾 ≤ (𝑀 + 𝑁)) | 
| 34 |   | zre 9330 | 
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℝ) | 
| 35 | 21, 22 | anim12i 338 | 
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) | 
| 36 | 35 | 3adant3 1019 | 
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈
ℝ)) | 
| 37 | 1, 36 | sylbi 121 | 
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) | 
| 38 |   | readdcl 8005 | 
. . . . . . . . 9
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 + 𝑁) ∈ ℝ) | 
| 39 | 37, 38 | syl 14 | 
. . . . . . . 8
⊢ (𝑀 ∈ (0...𝑁) → (𝑀 + 𝑁) ∈ ℝ) | 
| 40 | 34, 39 | anim12ci 339 | 
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) | 
| 41 | 6, 40 | sylan 283 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) | 
| 42 | 41 | 3adant3 1019 | 
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ)) | 
| 43 |   | subge0 8502 | 
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁))) | 
| 44 | 42, 43 | syl 14 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (0 ≤ ((𝑀 + 𝑁) − 𝐾) ↔ 𝐾 ≤ (𝑀 + 𝑁))) | 
| 45 | 33, 44 | mpbird 167 | 
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 0 ≤ ((𝑀 + 𝑁) − 𝐾)) | 
| 46 |   | elnn0z 9339 | 
. . 3
⊢ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℤ ∧ 0 ≤ ((𝑀 + 𝑁) − 𝐾))) | 
| 47 | 9, 45, 46 | sylanbrc 417 | 
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈
ℕ0) | 
| 48 |   | elfz3nn0 10190 | 
. . 3
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) | 
| 49 | 48 | 3ad2ant1 1020 | 
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝑁 ∈
ℕ0) | 
| 50 |   | elfzelz 10100 | 
. . . . . 6
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) | 
| 51 |   | zltnle 9372 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀)) | 
| 52 | 51 | ancoms 268 | 
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑀)) | 
| 53 |   | zre 9330 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) | 
| 54 |   | ltle 8114 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 → 𝑀 ≤ 𝐾)) | 
| 55 | 53, 34, 54 | syl2anr 290 | 
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → 𝑀 ≤ 𝐾)) | 
| 56 | 52, 55 | sylbird 170 | 
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (¬
𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾)) | 
| 57 | 6, 50, 56 | syl2an 289 | 
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (¬ 𝐾 ≤ 𝑀 → 𝑀 ≤ 𝐾)) | 
| 58 | 57 | 3impia 1202 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → 𝑀 ≤ 𝐾) | 
| 59 | 50 | zred 9448 | 
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℝ) | 
| 60 | 59 | adantl 277 | 
. . . . . 6
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ) | 
| 61 | 60, 11, 14 | leadd1d 8566 | 
. . . . 5
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 ≤ 𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) | 
| 62 | 61 | 3adant3 1019 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (𝑀 ≤ 𝐾 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) | 
| 63 | 58, 62 | mpbid 147 | 
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (𝑀 + 𝑁) ≤ (𝐾 + 𝑁)) | 
| 64 | 18, 11, 14 | lesubadd2d 8571 | 
. . . 4
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) | 
| 65 | 64 | 3adant3 1019 | 
. . 3
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → (((𝑀 + 𝑁) − 𝐾) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝐾 + 𝑁))) | 
| 66 | 63, 65 | mpbird 167 | 
. 2
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁) | 
| 67 |   | elfz2nn0 10187 | 
. 2
⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁) ↔ (((𝑀 + 𝑁) − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ ((𝑀 + 𝑁) − 𝐾) ≤ 𝑁)) | 
| 68 | 47, 49, 66, 67 | syl3anbrc 1183 | 
1
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) |