ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk GIF version

Theorem iseqf1olemqk 10578
Description: Lemma for seq3f1o 10588. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqk.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemqk (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Distinct variable groups:   𝑢,𝐽,𝑥   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)   𝑁(𝑥)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10222 . . . . . . . 8 (𝑥 ∈ (𝑀..^𝐾) → 𝑀𝑥)
21adantl 277 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀𝑥)
3 iseqf1olemqf.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfzle2 10094 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
53, 4syl 14 . . . . . . . . 9 (𝜑𝐾𝑁)
6 elfzolt2 10223 . . . . . . . . 9 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾)
75, 6anim12ci 339 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾𝐾𝑁))
8 elfzoelz 10213 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ)
98adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ)
109zred 9439 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ)
11 elfzoel2 10212 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ)
1312zred 9439 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ)
14 elfzel2 10089 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
153, 14syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ)
1716zred 9439 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ)
18 ltleletr 8101 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
1910, 13, 17, 18syl3anc 1249 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
207, 19mpd 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥𝑁)
21 elfzel1 10090 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
223, 21syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2322adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ)
24 elfz 10080 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
259, 23, 16, 24syl3anc 1249 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
262, 20, 25mpbir2and 946 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁))
276adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾)
28 zltnle 9363 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
299, 12, 28syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
3027, 29mpbid 147 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾𝑥)
3130intnanrd 933 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾𝑥𝑥 ≤ (𝐽𝐾)))
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
33 f1ocnv 5513 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
34 f1of 5500 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3532, 33, 343syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3635, 3ffvelcdmd 5694 . . . . . . . . . . . . 13 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
37 elfzelz 10091 . . . . . . . . . . . . 13 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐽𝐾) ∈ ℤ)
3938adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝐾) ∈ ℤ)
40 elfz 10080 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
419, 12, 39, 40syl3anc 1249 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
4231, 41mtbird 674 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(𝐽𝐾)))
4342iffalsed 3567 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = (𝐽𝑥))
44 iseqf1olemqk.const . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
4544r19.21bi 2582 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝑥) = 𝑥)
4643, 45eqtrd 2226 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = 𝑥)
47 simpr 110 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾))
4846, 47eqeltrd 2270 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾))
49 eleq1w 2254 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑥 ∈ (𝐾...(𝐽𝐾))))
50 eqeq1 2200 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 = 𝐾𝑥 = 𝐾))
51 oveq1 5925 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1))
5251fveq2d 5558 . . . . . . . . 9 (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1)))
5350, 52ifbieq2d 3581 . . . . . . . 8 (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))))
54 fveq2 5554 . . . . . . . 8 (𝑢 = 𝑥 → (𝐽𝑢) = (𝐽𝑥))
5549, 53, 54ifbieq12d 3583 . . . . . . 7 (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
56 iseqf1olemqf.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
5755, 56fvmptg 5633 . . . . . 6 ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5826, 48, 57syl2anc 411 . . . . 5 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5958, 46eqtrd 2226 . . . 4 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = 𝑥)
6059ralrimiva 2567 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥)
613, 32, 3, 56iseqf1olemqval 10571 . . . . 5 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
62 elfzelz 10091 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
633, 62syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
64 elfzuz2 10095 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
653, 64syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
6665, 3, 32, 44iseqf1olemkle 10568 . . . . . . . . 9 (𝜑𝐾 ≤ (𝐽𝐾))
67 eluz2 9598 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
6863, 38, 66, 67syl3anbrc 1183 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
69 eluzfz1 10097 . . . . . . . 8 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
7068, 69syl 14 . . . . . . 7 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
7170iftrued 3564 . . . . . 6 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
72 eqid 2193 . . . . . . 7 𝐾 = 𝐾
7372iftruei 3563 . . . . . 6 if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾
7471, 73eqtrdi 2242 . . . . 5 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = 𝐾)
7561, 74eqtrd 2226 . . . 4 (𝜑 → (𝑄𝐾) = 𝐾)
76 fveq2 5554 . . . . . . 7 (𝑥 = 𝐾 → (𝑄𝑥) = (𝑄𝐾))
77 id 19 . . . . . . 7 (𝑥 = 𝐾𝑥 = 𝐾)
7876, 77eqeq12d 2208 . . . . . 6 (𝑥 = 𝐾 → ((𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
7978ralsng 3658 . . . . 5 (𝐾 ∈ ℤ → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
803, 62, 793syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
8175, 80mpbird 167 . . 3 (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥)
82 ralun 3341 . . 3 ((∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
8360, 81, 82syl2anc 411 . 2 (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
84 elfzuz 10087 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
85 fzisfzounsn 10303 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
863, 84, 853syl 17 . . 3 (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
8786raleqdv 2696 . 2 (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥))
8883, 87mpbird 167 1 (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cun 3151  ifcif 3557  {csn 3618   class class class wbr 4029  cmpt 4090  ccnv 4658  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cr 7871  1c1 7873   < clt 8054  cle 8055  cmin 8190  cz 9317  cuz 9592  ...cfz 10074  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by:  seq3f1olemstep  10585
  Copyright terms: Public domain W3C validator