ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk GIF version

Theorem iseqf1olemqk 10480
Description: Lemma for seq3f1o 10490. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqk.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemqk (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Distinct variable groups:   𝑢,𝐽,𝑥   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)   𝑁(𝑥)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10141 . . . . . . . 8 (𝑥 ∈ (𝑀..^𝐾) → 𝑀𝑥)
21adantl 277 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀𝑥)
3 iseqf1olemqf.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfzle2 10014 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
53, 4syl 14 . . . . . . . . 9 (𝜑𝐾𝑁)
6 elfzolt2 10142 . . . . . . . . 9 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾)
75, 6anim12ci 339 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾𝐾𝑁))
8 elfzoelz 10133 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ)
98adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ)
109zred 9364 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ)
11 elfzoel2 10132 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ)
1312zred 9364 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ)
14 elfzel2 10009 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
153, 14syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ)
1716zred 9364 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ)
18 ltleletr 8029 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
1910, 13, 17, 18syl3anc 1238 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
207, 19mpd 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥𝑁)
21 elfzel1 10010 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
223, 21syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2322adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ)
24 elfz 10001 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
259, 23, 16, 24syl3anc 1238 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
262, 20, 25mpbir2and 944 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁))
276adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾)
28 zltnle 9288 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
299, 12, 28syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
3027, 29mpbid 147 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾𝑥)
3130intnanrd 932 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾𝑥𝑥 ≤ (𝐽𝐾)))
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
33 f1ocnv 5470 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
34 f1of 5457 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3532, 33, 343syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3635, 3ffvelcdmd 5648 . . . . . . . . . . . . 13 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
37 elfzelz 10011 . . . . . . . . . . . . 13 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐽𝐾) ∈ ℤ)
3938adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝐾) ∈ ℤ)
40 elfz 10001 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
419, 12, 39, 40syl3anc 1238 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
4231, 41mtbird 673 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(𝐽𝐾)))
4342iffalsed 3544 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = (𝐽𝑥))
44 iseqf1olemqk.const . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
4544r19.21bi 2565 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝑥) = 𝑥)
4643, 45eqtrd 2210 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = 𝑥)
47 simpr 110 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾))
4846, 47eqeltrd 2254 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾))
49 eleq1w 2238 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑥 ∈ (𝐾...(𝐽𝐾))))
50 eqeq1 2184 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 = 𝐾𝑥 = 𝐾))
51 oveq1 5876 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1))
5251fveq2d 5515 . . . . . . . . 9 (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1)))
5350, 52ifbieq2d 3558 . . . . . . . 8 (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))))
54 fveq2 5511 . . . . . . . 8 (𝑢 = 𝑥 → (𝐽𝑢) = (𝐽𝑥))
5549, 53, 54ifbieq12d 3560 . . . . . . 7 (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
56 iseqf1olemqf.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
5755, 56fvmptg 5588 . . . . . 6 ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5826, 48, 57syl2anc 411 . . . . 5 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5958, 46eqtrd 2210 . . . 4 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = 𝑥)
6059ralrimiva 2550 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥)
613, 32, 3, 56iseqf1olemqval 10473 . . . . 5 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
62 elfzelz 10011 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
633, 62syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
64 elfzuz2 10015 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
653, 64syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
6665, 3, 32, 44iseqf1olemkle 10470 . . . . . . . . 9 (𝜑𝐾 ≤ (𝐽𝐾))
67 eluz2 9523 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
6863, 38, 66, 67syl3anbrc 1181 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
69 eluzfz1 10017 . . . . . . . 8 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
7068, 69syl 14 . . . . . . 7 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
7170iftrued 3541 . . . . . 6 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
72 eqid 2177 . . . . . . 7 𝐾 = 𝐾
7372iftruei 3540 . . . . . 6 if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾
7471, 73eqtrdi 2226 . . . . 5 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = 𝐾)
7561, 74eqtrd 2210 . . . 4 (𝜑 → (𝑄𝐾) = 𝐾)
76 fveq2 5511 . . . . . . 7 (𝑥 = 𝐾 → (𝑄𝑥) = (𝑄𝐾))
77 id 19 . . . . . . 7 (𝑥 = 𝐾𝑥 = 𝐾)
7876, 77eqeq12d 2192 . . . . . 6 (𝑥 = 𝐾 → ((𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
7978ralsng 3631 . . . . 5 (𝐾 ∈ ℤ → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
803, 62, 793syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
8175, 80mpbird 167 . . 3 (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥)
82 ralun 3317 . . 3 ((∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
8360, 81, 82syl2anc 411 . 2 (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
84 elfzuz 10007 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
85 fzisfzounsn 10222 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
863, 84, 853syl 17 . . 3 (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
8786raleqdv 2678 . 2 (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥))
8883, 87mpbird 167 1 (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  cun 3127  ifcif 3534  {csn 3591   class class class wbr 4000  cmpt 4061  ccnv 4622  wf 5208  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  cr 7801  1c1 7803   < clt 7982  cle 7983  cmin 8118  cz 9242  cuz 9517  ...cfz 9995  ..^cfzo 10128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  seq3f1olemstep  10487
  Copyright terms: Public domain W3C validator