Proof of Theorem iseqf1olemqk
Step | Hyp | Ref
| Expression |
1 | | elfzole1 10032 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀..^𝐾) → 𝑀 ≤ 𝑥) |
2 | 1 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ≤ 𝑥) |
3 | | iseqf1olemqf.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
4 | | elfzle2 9908 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) |
5 | 3, 4 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≤ 𝑁) |
6 | | elfzolt2 10033 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾) |
7 | 5, 6 | anim12ci 337 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ∧ 𝐾 ≤ 𝑁)) |
8 | | elfzoelz 10024 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ) |
9 | 8 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ) |
10 | 9 | zred 9265 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ) |
11 | | elfzoel2 10023 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ) |
12 | 11 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ) |
13 | 12 | zred 9265 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ) |
14 | | elfzel2 9904 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
15 | 3, 14 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
16 | 15 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ) |
17 | 16 | zred 9265 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ) |
18 | | ltleletr 7938 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑥 ≤ 𝑁)) |
19 | 10, 13, 17, 18 | syl3anc 1217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑥 ≤ 𝑁)) |
20 | 7, 19 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ≤ 𝑁) |
21 | | elfzel1 9905 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
22 | 3, 21 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 22 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ) |
24 | | elfz 9896 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
25 | 9, 23, 16, 24 | syl3anc 1217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁))) |
26 | 2, 20, 25 | mpbir2and 929 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁)) |
27 | 6 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾) |
28 | | zltnle 9192 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑥)) |
29 | 9, 12, 28 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑥)) |
30 | 27, 29 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾 ≤ 𝑥) |
31 | 30 | intnanrd 918 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾 ≤ 𝑥 ∧ 𝑥 ≤ (◡𝐽‘𝐾))) |
32 | | iseqf1olemqf.j |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
33 | | f1ocnv 5420 |
. . . . . . . . . . . . . . 15
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
34 | | f1of 5407 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
35 | 32, 33, 34 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
36 | 35, 3 | ffvelrnd 5596 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
37 | | elfzelz 9906 |
. . . . . . . . . . . . 13
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
38 | 36, 37 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
39 | 38 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (◡𝐽‘𝐾) ∈ ℤ) |
40 | | elfz 9896 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ (𝐾 ≤ 𝑥 ∧ 𝑥 ≤ (◡𝐽‘𝐾)))) |
41 | 9, 12, 39, 40 | syl3anc 1217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ (𝐾 ≤ 𝑥 ∧ 𝑥 ≤ (◡𝐽‘𝐾)))) |
42 | 31, 41 | mtbird 663 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(◡𝐽‘𝐾))) |
43 | 42 | iffalsed 3511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥)) = (𝐽‘𝑥)) |
44 | | iseqf1olemqk.const |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
45 | 44 | r19.21bi 2542 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝐽‘𝑥) = 𝑥) |
46 | 43, 45 | eqtrd 2187 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥)) = 𝑥) |
47 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾)) |
48 | 46, 47 | eqeltrd 2231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥)) ∈ (𝑀..^𝐾)) |
49 | | eleq1w 2215 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝑥 ∈ (𝐾...(◡𝐽‘𝐾)))) |
50 | | eqeq1 2161 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (𝑢 = 𝐾 ↔ 𝑥 = 𝐾)) |
51 | | oveq1 5821 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1)) |
52 | 51 | fveq2d 5465 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1))) |
53 | 50, 52 | ifbieq2d 3525 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1)))) |
54 | | fveq2 5461 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → (𝐽‘𝑢) = (𝐽‘𝑥)) |
55 | 49, 53, 54 | ifbieq12d 3527 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥))) |
56 | | iseqf1olemqf.q |
. . . . . . 7
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
57 | 55, 56 | fvmptg 5537 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥)) ∈ (𝑀..^𝐾)) → (𝑄‘𝑥) = if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥))) |
58 | 26, 48, 57 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑄‘𝑥) = if(𝑥 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽‘𝑥))) |
59 | 58, 46 | eqtrd 2187 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀..^𝐾)) → (𝑄‘𝑥) = 𝑥) |
60 | 59 | ralrimiva 2527 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄‘𝑥) = 𝑥) |
61 | 3, 32, 3, 56 | iseqf1olemqval 10364 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝐾) = if(𝐾 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽‘𝐾))) |
62 | | elfzelz 9906 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
63 | 3, 62 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
64 | | elfzuz2 9909 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
65 | 3, 64 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
66 | 65, 3, 32, 44 | iseqf1olemkle 10361 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≤ (◡𝐽‘𝐾)) |
67 | | eluz2 9424 |
. . . . . . . . 9
⊢ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ ∧ 𝐾 ≤ (◡𝐽‘𝐾))) |
68 | 63, 38, 66, 67 | syl3anbrc 1166 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾)) |
69 | | eluzfz1 9911 |
. . . . . . . 8
⊢ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝐾) → 𝐾 ∈ (𝐾...(◡𝐽‘𝐾))) |
70 | 68, 69 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝐾...(◡𝐽‘𝐾))) |
71 | 70 | iftrued 3508 |
. . . . . 6
⊢ (𝜑 → if(𝐾 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽‘𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1)))) |
72 | | eqid 2154 |
. . . . . . 7
⊢ 𝐾 = 𝐾 |
73 | 72 | iftruei 3507 |
. . . . . 6
⊢ if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾 |
74 | 71, 73 | eqtrdi 2203 |
. . . . 5
⊢ (𝜑 → if(𝐾 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽‘𝐾)) = 𝐾) |
75 | 61, 74 | eqtrd 2187 |
. . . 4
⊢ (𝜑 → (𝑄‘𝐾) = 𝐾) |
76 | | fveq2 5461 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (𝑄‘𝑥) = (𝑄‘𝐾)) |
77 | | id 19 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → 𝑥 = 𝐾) |
78 | 76, 77 | eqeq12d 2169 |
. . . . . 6
⊢ (𝑥 = 𝐾 → ((𝑄‘𝑥) = 𝑥 ↔ (𝑄‘𝐾) = 𝐾)) |
79 | 78 | ralsng 3595 |
. . . . 5
⊢ (𝐾 ∈ ℤ →
(∀𝑥 ∈ {𝐾} (𝑄‘𝑥) = 𝑥 ↔ (𝑄‘𝐾) = 𝐾)) |
80 | 3, 62, 79 | 3syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄‘𝑥) = 𝑥 ↔ (𝑄‘𝐾) = 𝐾)) |
81 | 75, 80 | mpbird 166 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄‘𝑥) = 𝑥) |
82 | | ralun 3285 |
. . 3
⊢
((∀𝑥 ∈
(𝑀..^𝐾)(𝑄‘𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄‘𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄‘𝑥) = 𝑥) |
83 | 60, 81, 82 | syl2anc 409 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄‘𝑥) = 𝑥) |
84 | | elfzuz 9902 |
. . . 4
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
85 | | fzisfzounsn 10113 |
. . . 4
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾})) |
86 | 3, 84, 85 | 3syl 17 |
. . 3
⊢ (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾})) |
87 | 86 | raleqdv 2655 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄‘𝑥) = 𝑥)) |
88 | 83, 87 | mpbird 166 |
1
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄‘𝑥) = 𝑥) |