ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk GIF version

Theorem iseqf1olemqk 10581
Description: Lemma for seq3f1o 10591. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqk.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemqk (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Distinct variable groups:   𝑢,𝐽,𝑥   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)   𝑁(𝑥)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10225 . . . . . . . 8 (𝑥 ∈ (𝑀..^𝐾) → 𝑀𝑥)
21adantl 277 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀𝑥)
3 iseqf1olemqf.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfzle2 10097 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
53, 4syl 14 . . . . . . . . 9 (𝜑𝐾𝑁)
6 elfzolt2 10226 . . . . . . . . 9 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾)
75, 6anim12ci 339 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾𝐾𝑁))
8 elfzoelz 10216 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ)
98adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ)
109zred 9442 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ)
11 elfzoel2 10215 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ)
1312zred 9442 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ)
14 elfzel2 10092 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
153, 14syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ)
1716zred 9442 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ)
18 ltleletr 8103 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
1910, 13, 17, 18syl3anc 1249 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
207, 19mpd 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥𝑁)
21 elfzel1 10093 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
223, 21syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2322adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ)
24 elfz 10083 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
259, 23, 16, 24syl3anc 1249 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
262, 20, 25mpbir2and 946 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁))
276adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾)
28 zltnle 9366 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
299, 12, 28syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
3027, 29mpbid 147 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾𝑥)
3130intnanrd 933 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾𝑥𝑥 ≤ (𝐽𝐾)))
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
33 f1ocnv 5514 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
34 f1of 5501 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3532, 33, 343syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3635, 3ffvelcdmd 5695 . . . . . . . . . . . . 13 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
37 elfzelz 10094 . . . . . . . . . . . . 13 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐽𝐾) ∈ ℤ)
3938adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝐾) ∈ ℤ)
40 elfz 10083 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
419, 12, 39, 40syl3anc 1249 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
4231, 41mtbird 674 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(𝐽𝐾)))
4342iffalsed 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = (𝐽𝑥))
44 iseqf1olemqk.const . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
4544r19.21bi 2582 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝑥) = 𝑥)
4643, 45eqtrd 2226 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = 𝑥)
47 simpr 110 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾))
4846, 47eqeltrd 2270 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾))
49 eleq1w 2254 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑥 ∈ (𝐾...(𝐽𝐾))))
50 eqeq1 2200 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 = 𝐾𝑥 = 𝐾))
51 oveq1 5926 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1))
5251fveq2d 5559 . . . . . . . . 9 (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1)))
5350, 52ifbieq2d 3582 . . . . . . . 8 (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))))
54 fveq2 5555 . . . . . . . 8 (𝑢 = 𝑥 → (𝐽𝑢) = (𝐽𝑥))
5549, 53, 54ifbieq12d 3584 . . . . . . 7 (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
56 iseqf1olemqf.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
5755, 56fvmptg 5634 . . . . . 6 ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5826, 48, 57syl2anc 411 . . . . 5 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5958, 46eqtrd 2226 . . . 4 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = 𝑥)
6059ralrimiva 2567 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥)
613, 32, 3, 56iseqf1olemqval 10574 . . . . 5 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
62 elfzelz 10094 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
633, 62syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
64 elfzuz2 10098 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
653, 64syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
6665, 3, 32, 44iseqf1olemkle 10571 . . . . . . . . 9 (𝜑𝐾 ≤ (𝐽𝐾))
67 eluz2 9601 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
6863, 38, 66, 67syl3anbrc 1183 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
69 eluzfz1 10100 . . . . . . . 8 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
7068, 69syl 14 . . . . . . 7 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
7170iftrued 3565 . . . . . 6 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
72 eqid 2193 . . . . . . 7 𝐾 = 𝐾
7372iftruei 3564 . . . . . 6 if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾
7471, 73eqtrdi 2242 . . . . 5 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = 𝐾)
7561, 74eqtrd 2226 . . . 4 (𝜑 → (𝑄𝐾) = 𝐾)
76 fveq2 5555 . . . . . . 7 (𝑥 = 𝐾 → (𝑄𝑥) = (𝑄𝐾))
77 id 19 . . . . . . 7 (𝑥 = 𝐾𝑥 = 𝐾)
7876, 77eqeq12d 2208 . . . . . 6 (𝑥 = 𝐾 → ((𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
7978ralsng 3659 . . . . 5 (𝐾 ∈ ℤ → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
803, 62, 793syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
8175, 80mpbird 167 . . 3 (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥)
82 ralun 3342 . . 3 ((∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
8360, 81, 82syl2anc 411 . 2 (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
84 elfzuz 10090 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
85 fzisfzounsn 10306 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
863, 84, 853syl 17 . . 3 (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
8786raleqdv 2696 . 2 (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥))
8883, 87mpbird 167 1 (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cun 3152  ifcif 3558  {csn 3619   class class class wbr 4030  cmpt 4091  ccnv 4659  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cr 7873  1c1 7875   < clt 8056  cle 8057  cmin 8192  cz 9320  cuz 9595  ...cfz 10077  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  seq3f1olemstep  10588
  Copyright terms: Public domain W3C validator