ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk GIF version

Theorem iseqf1olemqk 10599
Description: Lemma for seq3f1o 10609. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqk.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemqk (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Distinct variable groups:   𝑢,𝐽,𝑥   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)   𝑁(𝑥)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10231 . . . . . . . 8 (𝑥 ∈ (𝑀..^𝐾) → 𝑀𝑥)
21adantl 277 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀𝑥)
3 iseqf1olemqf.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfzle2 10103 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
53, 4syl 14 . . . . . . . . 9 (𝜑𝐾𝑁)
6 elfzolt2 10232 . . . . . . . . 9 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾)
75, 6anim12ci 339 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾𝐾𝑁))
8 elfzoelz 10222 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ)
98adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ)
109zred 9448 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ)
11 elfzoel2 10221 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ)
1312zred 9448 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ)
14 elfzel2 10098 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
153, 14syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ)
1716zred 9448 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ)
18 ltleletr 8108 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
1910, 13, 17, 18syl3anc 1249 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
207, 19mpd 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥𝑁)
21 elfzel1 10099 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
223, 21syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2322adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ)
24 elfz 10089 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
259, 23, 16, 24syl3anc 1249 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
262, 20, 25mpbir2and 946 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁))
276adantl 277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾)
28 zltnle 9372 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
299, 12, 28syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
3027, 29mpbid 147 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾𝑥)
3130intnanrd 933 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾𝑥𝑥 ≤ (𝐽𝐾)))
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
33 f1ocnv 5517 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
34 f1of 5504 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3532, 33, 343syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3635, 3ffvelcdmd 5698 . . . . . . . . . . . . 13 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
37 elfzelz 10100 . . . . . . . . . . . . 13 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐽𝐾) ∈ ℤ)
3938adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝐾) ∈ ℤ)
40 elfz 10089 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
419, 12, 39, 40syl3anc 1249 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
4231, 41mtbird 674 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(𝐽𝐾)))
4342iffalsed 3571 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = (𝐽𝑥))
44 iseqf1olemqk.const . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
4544r19.21bi 2585 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝑥) = 𝑥)
4643, 45eqtrd 2229 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = 𝑥)
47 simpr 110 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾))
4846, 47eqeltrd 2273 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾))
49 eleq1w 2257 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑥 ∈ (𝐾...(𝐽𝐾))))
50 eqeq1 2203 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 = 𝐾𝑥 = 𝐾))
51 oveq1 5929 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1))
5251fveq2d 5562 . . . . . . . . 9 (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1)))
5350, 52ifbieq2d 3585 . . . . . . . 8 (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))))
54 fveq2 5558 . . . . . . . 8 (𝑢 = 𝑥 → (𝐽𝑢) = (𝐽𝑥))
5549, 53, 54ifbieq12d 3587 . . . . . . 7 (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
56 iseqf1olemqf.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
5755, 56fvmptg 5637 . . . . . 6 ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5826, 48, 57syl2anc 411 . . . . 5 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5958, 46eqtrd 2229 . . . 4 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = 𝑥)
6059ralrimiva 2570 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥)
613, 32, 3, 56iseqf1olemqval 10592 . . . . 5 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
62 elfzelz 10100 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
633, 62syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
64 elfzuz2 10104 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
653, 64syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
6665, 3, 32, 44iseqf1olemkle 10589 . . . . . . . . 9 (𝜑𝐾 ≤ (𝐽𝐾))
67 eluz2 9607 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
6863, 38, 66, 67syl3anbrc 1183 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
69 eluzfz1 10106 . . . . . . . 8 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
7068, 69syl 14 . . . . . . 7 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
7170iftrued 3568 . . . . . 6 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
72 eqid 2196 . . . . . . 7 𝐾 = 𝐾
7372iftruei 3567 . . . . . 6 if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾
7471, 73eqtrdi 2245 . . . . 5 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = 𝐾)
7561, 74eqtrd 2229 . . . 4 (𝜑 → (𝑄𝐾) = 𝐾)
76 fveq2 5558 . . . . . . 7 (𝑥 = 𝐾 → (𝑄𝑥) = (𝑄𝐾))
77 id 19 . . . . . . 7 (𝑥 = 𝐾𝑥 = 𝐾)
7876, 77eqeq12d 2211 . . . . . 6 (𝑥 = 𝐾 → ((𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
7978ralsng 3662 . . . . 5 (𝐾 ∈ ℤ → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
803, 62, 793syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
8175, 80mpbird 167 . . 3 (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥)
82 ralun 3345 . . 3 ((∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
8360, 81, 82syl2anc 411 . 2 (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
84 elfzuz 10096 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
85 fzisfzounsn 10312 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
863, 84, 853syl 17 . . 3 (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
8786raleqdv 2699 . 2 (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥))
8883, 87mpbird 167 1 (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cun 3155  ifcif 3561  {csn 3622   class class class wbr 4033  cmpt 4094  ccnv 4662  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  cr 7878  1c1 7880   < clt 8061  cle 8062  cmin 8197  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  seq3f1olemstep  10606
  Copyright terms: Public domain W3C validator