ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqk GIF version

Theorem iseqf1olemqk 10429
Description: Lemma for seq3f1o 10439. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemqk.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
Assertion
Ref Expression
iseqf1olemqk (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Distinct variable groups:   𝑢,𝐽,𝑥   𝑢,𝐾,𝑥   𝑢,𝑀,𝑥   𝑢,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)   𝑁(𝑥)

Proof of Theorem iseqf1olemqk
StepHypRef Expression
1 elfzole1 10090 . . . . . . . 8 (𝑥 ∈ (𝑀..^𝐾) → 𝑀𝑥)
21adantl 275 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀𝑥)
3 iseqf1olemqf.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfzle2 9963 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
53, 4syl 14 . . . . . . . . 9 (𝜑𝐾𝑁)
6 elfzolt2 10091 . . . . . . . . 9 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 < 𝐾)
75, 6anim12ci 337 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾𝐾𝑁))
8 elfzoelz 10082 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝑥 ∈ ℤ)
98adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℤ)
109zred 9313 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ ℝ)
11 elfzoel2 10081 . . . . . . . . . . 11 (𝑥 ∈ (𝑀..^𝐾) → 𝐾 ∈ ℤ)
1211adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℤ)
1312zred 9313 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝐾 ∈ ℝ)
14 elfzel2 9958 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
153, 14syl 14 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℤ)
1716zred 9313 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑁 ∈ ℝ)
18 ltleletr 7980 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
1910, 13, 17, 18syl3anc 1228 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ((𝑥 < 𝐾𝐾𝑁) → 𝑥𝑁))
207, 19mpd 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥𝑁)
21 elfzel1 9959 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
223, 21syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2322adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑀 ∈ ℤ)
24 elfz 9950 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
259, 23, 16, 24syl3anc 1228 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑀𝑥𝑥𝑁)))
262, 20, 25mpbir2and 934 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀...𝑁))
276adantl 275 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 < 𝐾)
28 zltnle 9237 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
299, 12, 28syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 < 𝐾 ↔ ¬ 𝐾𝑥))
3027, 29mpbid 146 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝐾𝑥)
3130intnanrd 922 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ (𝐾𝑥𝑥 ≤ (𝐽𝐾)))
32 iseqf1olemqf.j . . . . . . . . . . . . . . 15 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
33 f1ocnv 5445 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
34 f1of 5432 . . . . . . . . . . . . . . 15 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3532, 33, 343syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
3635, 3ffvelrnd 5621 . . . . . . . . . . . . 13 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
37 elfzelz 9960 . . . . . . . . . . . . 13 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐽𝐾) ∈ ℤ)
3938adantr 274 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝐾) ∈ ℤ)
40 elfz 9950 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
419, 12, 39, 40syl3anc 1228 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑥 ∈ (𝐾...(𝐽𝐾)) ↔ (𝐾𝑥𝑥 ≤ (𝐽𝐾))))
4231, 41mtbird 663 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → ¬ 𝑥 ∈ (𝐾...(𝐽𝐾)))
4342iffalsed 3530 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = (𝐽𝑥))
44 iseqf1olemqk.const . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
4544r19.21bi 2554 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝐽𝑥) = 𝑥)
4643, 45eqtrd 2198 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) = 𝑥)
47 simpr 109 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → 𝑥 ∈ (𝑀..^𝐾))
4846, 47eqeltrd 2243 . . . . . 6 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾))
49 eleq1w 2227 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝑥 ∈ (𝐾...(𝐽𝐾))))
50 eqeq1 2172 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢 = 𝐾𝑥 = 𝐾))
51 oveq1 5849 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 − 1) = (𝑥 − 1))
5251fveq2d 5490 . . . . . . . . 9 (𝑢 = 𝑥 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝑥 − 1)))
5350, 52ifbieq2d 3544 . . . . . . . 8 (𝑢 = 𝑥 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))))
54 fveq2 5486 . . . . . . . 8 (𝑢 = 𝑥 → (𝐽𝑢) = (𝐽𝑥))
5549, 53, 54ifbieq12d 3546 . . . . . . 7 (𝑢 = 𝑥 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
56 iseqf1olemqf.q . . . . . . 7 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
5755, 56fvmptg 5562 . . . . . 6 ((𝑥 ∈ (𝑀...𝑁) ∧ if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)) ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5826, 48, 57syl2anc 409 . . . . 5 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = if(𝑥 ∈ (𝐾...(𝐽𝐾)), if(𝑥 = 𝐾, 𝐾, (𝐽‘(𝑥 − 1))), (𝐽𝑥)))
5958, 46eqtrd 2198 . . . 4 ((𝜑𝑥 ∈ (𝑀..^𝐾)) → (𝑄𝑥) = 𝑥)
6059ralrimiva 2539 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥)
613, 32, 3, 56iseqf1olemqval 10422 . . . . 5 (𝜑 → (𝑄𝐾) = if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)))
62 elfzelz 9960 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
633, 62syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
64 elfzuz2 9964 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
653, 64syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
6665, 3, 32, 44iseqf1olemkle 10419 . . . . . . . . 9 (𝜑𝐾 ≤ (𝐽𝐾))
67 eluz2 9472 . . . . . . . . 9 ((𝐽𝐾) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ ∧ 𝐾 ≤ (𝐽𝐾)))
6863, 38, 66, 67syl3anbrc 1171 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (ℤ𝐾))
69 eluzfz1 9966 . . . . . . . 8 ((𝐽𝐾) ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...(𝐽𝐾)))
7068, 69syl 14 . . . . . . 7 (𝜑𝐾 ∈ (𝐾...(𝐽𝐾)))
7170iftrued 3527 . . . . . 6 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))))
72 eqid 2165 . . . . . . 7 𝐾 = 𝐾
7372iftruei 3526 . . . . . 6 if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))) = 𝐾
7471, 73eqtrdi 2215 . . . . 5 (𝜑 → if(𝐾 ∈ (𝐾...(𝐽𝐾)), if(𝐾 = 𝐾, 𝐾, (𝐽‘(𝐾 − 1))), (𝐽𝐾)) = 𝐾)
7561, 74eqtrd 2198 . . . 4 (𝜑 → (𝑄𝐾) = 𝐾)
76 fveq2 5486 . . . . . . 7 (𝑥 = 𝐾 → (𝑄𝑥) = (𝑄𝐾))
77 id 19 . . . . . . 7 (𝑥 = 𝐾𝑥 = 𝐾)
7876, 77eqeq12d 2180 . . . . . 6 (𝑥 = 𝐾 → ((𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
7978ralsng 3616 . . . . 5 (𝐾 ∈ ℤ → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
803, 62, 793syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥 ↔ (𝑄𝐾) = 𝐾))
8175, 80mpbird 166 . . 3 (𝜑 → ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥)
82 ralun 3304 . . 3 ((∀𝑥 ∈ (𝑀..^𝐾)(𝑄𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝑄𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
8360, 81, 82syl2anc 409 . 2 (𝜑 → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥)
84 elfzuz 9956 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
85 fzisfzounsn 10171 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
863, 84, 853syl 17 . . 3 (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾}))
8786raleqdv 2667 . 2 (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝑄𝑥) = 𝑥))
8883, 87mpbird 166 1 (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  cun 3114  ifcif 3520  {csn 3576   class class class wbr 3982  cmpt 4043  ccnv 4603  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cr 7752  1c1 7754   < clt 7933  cle 7934  cmin 8069  cz 9191  cuz 9466  ...cfz 9944  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by:  seq3f1olemstep  10436
  Copyright terms: Public domain W3C validator