ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsqpwdvds GIF version

Theorem difsqpwdvds 12320
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))

Proof of Theorem difsqpwdvds
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 9175 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nn0cn 9175 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 338 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1017 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 subsq 10612 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
64, 5syl 14 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
76adantr 276 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
87eqeq2d 2189 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))))
9 simprl 529 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈ ℙ)
10 nn0z 9262 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
11 nn0z 9262 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
1210, 11anim12i 338 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 zaddcl 9282 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1412, 13syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
15143adant3 1017 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ)
16 nn0re 9174 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1716adantl 277 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
18 1red 7963 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 1 ∈ ℝ)
19 nn0re 9174 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2019adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
2117, 18, 20ltaddsub2d 8493 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴𝐵)))
22 simpr 110 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
2320, 22, 183jca 1177 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ))
24 difgtsumgt 9311 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2523, 24syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2621, 25sylbid 150 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵)))
27263impia 1200 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵))
28 eluz2b1 9590 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 < (𝐴 + 𝐵)))
2915, 27, 28sylanbrc 417 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ (ℤ‘2))
3029adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈ (ℤ‘2))
31 simprr 531 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
329, 30, 313jca 1177 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
3332adantr 276 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
34 zsubcl 9283 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3513, 34jca 306 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
3612, 35syl 14 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
37363adant3 1017 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
38 dvdsmul1 11804 . . . . . . . 8 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
3937, 38syl 14 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
4039ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
41 breq2 4004 . . . . . . 7 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4241adantl 277 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4340, 42mpbird 167 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ (𝐶𝐷))
44 dvdsprmpweqnn 12318 . . . . 5 ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚)))
4533, 43, 44sylc 62 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚))
46 prmz 12094 . . . . . . . . . . 11 (𝐶 ∈ ℙ → 𝐶 ∈ ℤ)
47 iddvdsexp 11806 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
4846, 47sylan 283 . . . . . . . . . 10 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
49 breq2 4004 . . . . . . . . . 10 ((𝐴 + 𝐵) = (𝐶𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶𝑚)))
5048, 49syl5ibrcom 157 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5150rexlimdva 2594 . . . . . . . 8 (𝐶 ∈ ℙ → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5251adantr 276 . . . . . . 7 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5352adantl 277 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5453adantr 276 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5512, 34syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℤ)
56553adant3 1017 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ ℤ)
5721biimp3a 1345 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴𝐵))
58 eluz2b1 9590 . . . . . . . . . . 11 ((𝐴𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 < (𝐴𝐵)))
5956, 57, 58sylanbrc 417 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ (ℤ‘2))
6059adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴𝐵) ∈ (ℤ‘2))
619, 60, 313jca 1177 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
6261adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
63 dvdsmul2 11805 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6437, 63syl 14 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6564ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
66 breq2 4004 . . . . . . . . 9 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6766adantl 277 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6865, 67mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ (𝐶𝐷))
69 dvdsprmpweqnn 12318 . . . . . . 7 ((𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴𝐵) ∥ (𝐶𝐷) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛)))
7062, 68, 69sylc 62 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛))
71 iddvdsexp 11806 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
7246, 71sylan 283 . . . . . . . . . . . 12 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
73 breq2 4004 . . . . . . . . . . . 12 ((𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴𝐵) ↔ 𝐶 ∥ (𝐶𝑛)))
7472, 73syl5ibrcom 157 . . . . . . . . . . 11 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7574rexlimdva 2594 . . . . . . . . . 10 (𝐶 ∈ ℙ → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7675adantr 276 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7776adantl 277 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7877adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7946adantr 276 . . . . . . . . . . . . 13 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ ℤ)
8037, 79anim12ci 339 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
81 3anass 982 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
8280, 81sylibr 134 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
83 dvds2sub 11817 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8482, 83syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8513ad2ant1 1018 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ)
8623ad2ant2 1019 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ)
8785, 86, 86pnncand 8297 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
8822timesd 9150 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0 → (2 · 𝐵) = (𝐵 + 𝐵))
8988eqcomd 2183 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (𝐵 + 𝐵) = (2 · 𝐵))
90893ad2ant2 1019 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵))
9187, 90eqtrd 2210 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
9291breq2d 4012 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) ↔ 𝐶 ∥ (2 · 𝐵)))
9392biimpd 144 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9493adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9584, 94syld 45 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9695expcomd 1441 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9796adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9878, 97syld 45 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9970, 98mpd 13 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))
10054, 99syld 45 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (2 · 𝐵)))
10145, 100mpd 13 . . 3 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → 𝐶 ∥ (2 · 𝐵))
102101ex 115 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
1038, 102sylbid 150 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cmin 8118  cn 8908  2c2 8959  0cn0 9165  cz 9242  cuz 9517  cexp 10505  cdvds 11778  cprime 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-xnn0 9229  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator