ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsqpwdvds GIF version

Theorem difsqpwdvds 12869
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))

Proof of Theorem difsqpwdvds
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 9387 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nn0cn 9387 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 338 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1041 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 subsq 10876 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
64, 5syl 14 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
76adantr 276 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
87eqeq2d 2241 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))))
9 simprl 529 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈ ℙ)
10 nn0z 9474 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
11 nn0z 9474 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
1210, 11anim12i 338 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 zaddcl 9494 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1412, 13syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
15143adant3 1041 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ)
16 nn0re 9386 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1716adantl 277 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
18 1red 8169 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 1 ∈ ℝ)
19 nn0re 9386 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2019adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
2117, 18, 20ltaddsub2d 8701 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴𝐵)))
22 simpr 110 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
2320, 22, 183jca 1201 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ))
24 difgtsumgt 9524 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2523, 24syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2621, 25sylbid 150 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵)))
27263impia 1224 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵))
28 eluz2b1 9804 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 < (𝐴 + 𝐵)))
2915, 27, 28sylanbrc 417 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ (ℤ‘2))
3029adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈ (ℤ‘2))
31 simprr 531 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
329, 30, 313jca 1201 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
3332adantr 276 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
34 zsubcl 9495 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3513, 34jca 306 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
3612, 35syl 14 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
37363adant3 1041 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
38 dvdsmul1 12332 . . . . . . . 8 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
3937, 38syl 14 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
4039ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
41 breq2 4087 . . . . . . 7 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4241adantl 277 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4340, 42mpbird 167 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ (𝐶𝐷))
44 dvdsprmpweqnn 12867 . . . . 5 ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚)))
4533, 43, 44sylc 62 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚))
46 prmz 12641 . . . . . . . . . . 11 (𝐶 ∈ ℙ → 𝐶 ∈ ℤ)
47 iddvdsexp 12334 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
4846, 47sylan 283 . . . . . . . . . 10 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
49 breq2 4087 . . . . . . . . . 10 ((𝐴 + 𝐵) = (𝐶𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶𝑚)))
5048, 49syl5ibrcom 157 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5150rexlimdva 2648 . . . . . . . 8 (𝐶 ∈ ℙ → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5251adantr 276 . . . . . . 7 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5352adantl 277 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5453adantr 276 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5512, 34syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℤ)
56553adant3 1041 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ ℤ)
5721biimp3a 1379 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴𝐵))
58 eluz2b1 9804 . . . . . . . . . . 11 ((𝐴𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 < (𝐴𝐵)))
5956, 57, 58sylanbrc 417 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ (ℤ‘2))
6059adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴𝐵) ∈ (ℤ‘2))
619, 60, 313jca 1201 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
6261adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
63 dvdsmul2 12333 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6437, 63syl 14 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6564ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
66 breq2 4087 . . . . . . . . 9 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6766adantl 277 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6865, 67mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ (𝐶𝐷))
69 dvdsprmpweqnn 12867 . . . . . . 7 ((𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴𝐵) ∥ (𝐶𝐷) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛)))
7062, 68, 69sylc 62 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛))
71 iddvdsexp 12334 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
7246, 71sylan 283 . . . . . . . . . . . 12 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
73 breq2 4087 . . . . . . . . . . . 12 ((𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴𝐵) ↔ 𝐶 ∥ (𝐶𝑛)))
7472, 73syl5ibrcom 157 . . . . . . . . . . 11 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7574rexlimdva 2648 . . . . . . . . . 10 (𝐶 ∈ ℙ → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7675adantr 276 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7776adantl 277 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7877adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7946adantr 276 . . . . . . . . . . . . 13 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ ℤ)
8037, 79anim12ci 339 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
81 3anass 1006 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
8280, 81sylibr 134 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
83 dvds2sub 12345 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8482, 83syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8513ad2ant1 1042 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ)
8623ad2ant2 1043 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ)
8785, 86, 86pnncand 8504 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
8822timesd 9362 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0 → (2 · 𝐵) = (𝐵 + 𝐵))
8988eqcomd 2235 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (𝐵 + 𝐵) = (2 · 𝐵))
90893ad2ant2 1043 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵))
9187, 90eqtrd 2262 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
9291breq2d 4095 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) ↔ 𝐶 ∥ (2 · 𝐵)))
9392biimpd 144 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9493adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9584, 94syld 45 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9695expcomd 1484 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9796adantr 276 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9878, 97syld 45 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9970, 98mpd 13 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))
10054, 99syld 45 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (2 · 𝐵)))
10145, 100mpd 13 . . 3 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → 𝐶 ∥ (2 · 𝐵))
102101ex 115 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
1038, 102sylbid 150 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cmin 8325  cn 9118  2c2 9169  0cn0 9377  cz 9454  cuz 9730  cexp 10768  cdvds 12306  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator