Step | Hyp | Ref
| Expression |
1 | | nn0cn 9124 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) |
2 | | nn0cn 9124 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℂ) |
3 | 1, 2 | anim12i 336 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
4 | 3 | 3adant3 1007 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | | subsq 10561 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
6 | 4, 5 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
7 | 6 | adantr 274 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
8 | 7 | eqeq2d 2177 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶↑𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)))) |
9 | | simprl 521 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈
ℙ) |
10 | | nn0z 9211 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
11 | | nn0z 9211 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℤ) |
12 | 10, 11 | anim12i 336 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
13 | | zaddcl 9231 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) |
14 | 12, 13 | syl 14 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 + 𝐵) ∈ ℤ) |
15 | 14 | 3adant3 1007 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ) |
16 | | nn0re 9123 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
17 | 16 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈ ℝ) |
18 | | 1red 7914 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 1 ∈ ℝ) |
19 | | nn0re 9123 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
20 | 19 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐴 ∈ ℝ) |
21 | 17, 18, 20 | ltaddsub2d 8444 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴 − 𝐵))) |
22 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈
ℕ0) |
23 | 20, 22, 18 | 3jca 1167 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈
ℝ)) |
24 | | difgtsumgt 9260 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0
∧ 1 ∈ ℝ) → (1 < (𝐴 − 𝐵) → 1 < (𝐴 + 𝐵))) |
25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (1 < (𝐴 − 𝐵) → 1 < (𝐴 + 𝐵))) |
26 | 21, 25 | sylbid 149 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵))) |
27 | 26 | 3impia 1190 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵)) |
28 | | eluz2b1 9539 |
. . . . . . . . 9
⊢ ((𝐴 + 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 <
(𝐴 + 𝐵))) |
29 | 15, 27, 28 | sylanbrc 414 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈
(ℤ≥‘2)) |
30 | 29 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈
(ℤ≥‘2)) |
31 | | simprr 522 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈
ℕ0) |
32 | 9, 30, 31 | 3jca 1167 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0)) |
33 | 32 | adantr 274 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0)) |
34 | | zsubcl 9232 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) |
35 | 13, 34 | jca 304 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ)) |
36 | 12, 35 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ)) |
37 | 36 | 3adant3 1007 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ)) |
38 | | dvdsmul1 11753 |
. . . . . . . 8
⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
39 | 37, 38 | syl 14 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
40 | 39 | ad2antrr 480 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
41 | | breq2 3986 |
. . . . . . 7
⊢ ((𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶↑𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵)))) |
42 | 41 | adantl 275 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶↑𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵)))) |
43 | 40, 42 | mpbird 166 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐴 + 𝐵) ∥ (𝐶↑𝐷)) |
44 | | dvdsprmpweqnn 12267 |
. . . . 5
⊢ ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶↑𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶↑𝑚))) |
45 | 33, 43, 44 | sylc 62 |
. . . 4
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶↑𝑚)) |
46 | | prmz 12043 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℙ → 𝐶 ∈
ℤ) |
47 | | iddvdsexp 11755 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶↑𝑚)) |
48 | 46, 47 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶↑𝑚)) |
49 | | breq2 3986 |
. . . . . . . . . 10
⊢ ((𝐴 + 𝐵) = (𝐶↑𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶↑𝑚))) |
50 | 48, 49 | syl5ibrcom 156 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (𝐴 + 𝐵))) |
51 | 50 | rexlimdva 2583 |
. . . . . . . 8
⊢ (𝐶 ∈ ℙ →
(∃𝑚 ∈ ℕ
(𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (𝐴 + 𝐵))) |
52 | 51 | adantr 274 |
. . . . . . 7
⊢ ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)
→ (∃𝑚 ∈
ℕ (𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (𝐴 + 𝐵))) |
53 | 52 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) →
(∃𝑚 ∈ ℕ
(𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (𝐴 + 𝐵))) |
54 | 53 | adantr 274 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (𝐴 + 𝐵))) |
55 | 12, 34 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 − 𝐵) ∈ ℤ) |
56 | 55 | 3adant3 1007 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 − 𝐵) ∈ ℤ) |
57 | 21 | biimp3a 1335 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 − 𝐵)) |
58 | | eluz2b1 9539 |
. . . . . . . . . . 11
⊢ ((𝐴 − 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 − 𝐵) ∈ ℤ ∧ 1 <
(𝐴 − 𝐵))) |
59 | 56, 57, 58 | sylanbrc 414 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 − 𝐵) ∈
(ℤ≥‘2)) |
60 | 59 | adantr 274 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 − 𝐵) ∈
(ℤ≥‘2)) |
61 | 9, 60, 31 | 3jca 1167 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 − 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0)) |
62 | 61 | adantr 274 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 − 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0)) |
63 | | dvdsmul2 11754 |
. . . . . . . . . 10
⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
64 | 37, 63 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
65 | 64 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
66 | | breq2 3986 |
. . . . . . . . 9
⊢ ((𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) → ((𝐴 − 𝐵) ∥ (𝐶↑𝐷) ↔ (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵)))) |
67 | 66 | adantl 275 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → ((𝐴 − 𝐵) ∥ (𝐶↑𝐷) ↔ (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵)))) |
68 | 65, 67 | mpbird 166 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐴 − 𝐵) ∥ (𝐶↑𝐷)) |
69 | | dvdsprmpweqnn 12267 |
. . . . . . 7
⊢ ((𝐶 ∈ ℙ ∧ (𝐴 − 𝐵) ∈ (ℤ≥‘2)
∧ 𝐷 ∈
ℕ0) → ((𝐴 − 𝐵) ∥ (𝐶↑𝐷) → ∃𝑛 ∈ ℕ (𝐴 − 𝐵) = (𝐶↑𝑛))) |
70 | 62, 68, 69 | sylc 62 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → ∃𝑛 ∈ ℕ (𝐴 − 𝐵) = (𝐶↑𝑛)) |
71 | | iddvdsexp 11755 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶↑𝑛)) |
72 | 46, 71 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶↑𝑛)) |
73 | | breq2 3986 |
. . . . . . . . . . . 12
⊢ ((𝐴 − 𝐵) = (𝐶↑𝑛) → (𝐶 ∥ (𝐴 − 𝐵) ↔ 𝐶 ∥ (𝐶↑𝑛))) |
74 | 72, 73 | syl5ibrcom 156 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴 − 𝐵) = (𝐶↑𝑛) → 𝐶 ∥ (𝐴 − 𝐵))) |
75 | 74 | rexlimdva 2583 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℙ →
(∃𝑛 ∈ ℕ
(𝐴 − 𝐵) = (𝐶↑𝑛) → 𝐶 ∥ (𝐴 − 𝐵))) |
76 | 75 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)
→ (∃𝑛 ∈
ℕ (𝐴 − 𝐵) = (𝐶↑𝑛) → 𝐶 ∥ (𝐴 − 𝐵))) |
77 | 76 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) →
(∃𝑛 ∈ ℕ
(𝐴 − 𝐵) = (𝐶↑𝑛) → 𝐶 ∥ (𝐴 − 𝐵))) |
78 | 77 | adantr 274 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (∃𝑛 ∈ ℕ (𝐴 − 𝐵) = (𝐶↑𝑛) → 𝐶 ∥ (𝐴 − 𝐵))) |
79 | 46 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)
→ 𝐶 ∈
ℤ) |
80 | 37, 79 | anim12ci 337 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ))) |
81 | | 3anass 972 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ))) |
82 | 80, 81 | sylibr 133 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ)) |
83 | | dvds2sub 11766 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴 − 𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴 − 𝐵)))) |
84 | 82, 83 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴 − 𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴 − 𝐵)))) |
85 | 1 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ) |
86 | 2 | 3ad2ant2 1009 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ) |
87 | 85, 86, 86 | pnncand 8248 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (𝐵 + 𝐵)) |
88 | 2 | 2timesd 9099 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ ℕ0
→ (2 · 𝐵) =
(𝐵 + 𝐵)) |
89 | 88 | eqcomd 2171 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ0
→ (𝐵 + 𝐵) = (2 · 𝐵)) |
90 | 89 | 3ad2ant2 1009 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵)) |
91 | 87, 90 | eqtrd 2198 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (2 · 𝐵)) |
92 | 91 | breq2d 3994 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴 − 𝐵)) ↔ 𝐶 ∥ (2 · 𝐵))) |
93 | 92 | biimpd 143 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴 − 𝐵)) → 𝐶 ∥ (2 · 𝐵))) |
94 | 93 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴 − 𝐵)) → 𝐶 ∥ (2 · 𝐵))) |
95 | 84, 94 | syld 45 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴 − 𝐵)) → 𝐶 ∥ (2 · 𝐵))) |
96 | 95 | expcomd 1429 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴 − 𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))) |
97 | 96 | adantr 274 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐶 ∥ (𝐴 − 𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))) |
98 | 78, 97 | syld 45 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (∃𝑛 ∈ ℕ (𝐴 − 𝐵) = (𝐶↑𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))) |
99 | 70, 98 | mpd 13 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))) |
100 | 54, 99 | syld 45 |
. . . 4
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶↑𝑚) → 𝐶 ∥ (2 · 𝐵))) |
101 | 45, 100 | mpd 13 |
. . 3
⊢ ((((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) → 𝐶 ∥ (2 · 𝐵)) |
102 | 101 | ex 114 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶↑𝐷) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) → 𝐶 ∥ (2 · 𝐵))) |
103 | 8, 102 | sylbid 149 |
1
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶↑𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵))) |