ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmco GIF version

Theorem mhmco 13372
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
mhmco ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))

Proof of Theorem mhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13346 . . 3 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝑈 ∈ Mnd)
2 mhmrcl1 13345 . . 3 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
31, 2anim12ci 339 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd))
4 eqid 2206 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
5 eqid 2206 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 13347 . . . 4 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
7 eqid 2206 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
87, 4mhmf 13347 . . . 4 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
9 fco 5448 . . . 4 ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
106, 8, 9syl2an 289 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
11 eqid 2206 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
12 eqid 2206 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
137, 11, 12mhmlin 13349 . . . . . . . . 9 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
14133expb 1207 . . . . . . . 8 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1514adantll 476 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1615fveq2d 5590 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))))
17 simpll 527 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MndHom 𝑈))
188ad2antlr 489 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
19 simprl 529 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
2018, 19ffvelcdmd 5726 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
21 simprr 531 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2218, 21ffvelcdmd 5726 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑦) ∈ (Base‘𝑇))
23 eqid 2206 . . . . . . . 8 (+g𝑈) = (+g𝑈)
244, 12, 23mhmlin 13349 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2517, 20, 22, 24syl3anc 1250 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2616, 25eqtrd 2239 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
272adantl 277 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
287, 11mndcl 13305 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
29283expb 1207 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3027, 29sylan 283 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
31 fvco3 5660 . . . . . 6 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
3218, 30, 31syl2anc 411 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
33 fvco3 5660 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3418, 19, 33syl2anc 411 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
35 fvco3 5660 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3618, 21, 35syl2anc 411 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3734, 36oveq12d 5972 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
3826, 32, 373eqtr4d 2249 . . . 4 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
3938ralrimivva 2589 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
408adantl 277 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
41 eqid 2206 . . . . . . 7 (0g𝑆) = (0g𝑆)
427, 41mndidcl 13312 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
4327, 42syl 14 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
44 fvco3 5660 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (0g𝑆) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
4540, 43, 44syl2anc 411 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
46 eqid 2206 . . . . . . 7 (0g𝑇) = (0g𝑇)
4741, 46mhm0 13350 . . . . . 6 (𝐺 ∈ (𝑆 MndHom 𝑇) → (𝐺‘(0g𝑆)) = (0g𝑇))
4847adantl 277 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐺‘(0g𝑆)) = (0g𝑇))
4948fveq2d 5590 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(𝐺‘(0g𝑆))) = (𝐹‘(0g𝑇)))
50 eqid 2206 . . . . . 6 (0g𝑈) = (0g𝑈)
5146, 50mhm0 13350 . . . . 5 (𝐹 ∈ (𝑇 MndHom 𝑈) → (𝐹‘(0g𝑇)) = (0g𝑈))
5251adantr 276 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑇)) = (0g𝑈))
5345, 49, 523eqtrd 2243 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))
5410, 39, 533jca 1180 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈)))
557, 5, 11, 23, 41, 50ismhm 13343 . 2 ((𝐹𝐺) ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))))
563, 54, 55sylanbrc 417 1 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  ccom 4684  wf 5273  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  0gc0g 13138  Mndcmnd 13298   MndHom cmhm 13339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-map 6747  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mhm 13341
This theorem is referenced by:  ghmco  13650  rhmco  13986  lgseisenlem4  15600
  Copyright terms: Public domain W3C validator