ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funco GIF version

Theorem funco 5294
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4931 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐺
2 funmo 5269 . . . . . . . . . 10 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1885 . . . . . . . . 9 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
43ralrimivw 2568 . . . . . . . 8 (Fun 𝐹 → ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦)
5 dffun8 5282 . . . . . . . . 9 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧))
65simprbi 275 . . . . . . . 8 (Fun 𝐺 → ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧)
74, 6anim12ci 339 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺) → (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
8 r19.26 2620 . . . . . . 7 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) ↔ (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
97, 8sylibr 134 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦))
10 nfv 1539 . . . . . . . 8 𝑦 𝑥𝐺𝑧
1110euexex 2127 . . . . . . 7 ((∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
1211ralimi 2557 . . . . . 6 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
139, 12syl 14 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
14 ssralv 3243 . . . . 5 (dom (𝐹𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)))
151, 13, 14mpsyl 65 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
16 df-br 4030 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺))
17 df-co 4668 . . . . . . . 8 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
1817eleq2i 2260 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
19 opabid 4286 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2016, 18, 193bitri 206 . . . . . 6 (𝑥(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2120mobii 2079 . . . . 5 (∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2221ralbii 2500 . . . 4 (∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2315, 22sylibr 134 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦)
24 relco 5164 . . 3 Rel (𝐹𝐺)
2523, 24jctil 312 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
26 dffun7 5281 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
2725, 26sylibr 134 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  wral 2472  wss 3153  cop 3621   class class class wbr 4029  {copab 4089  dom cdm 4659  ccom 4663  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256
This theorem is referenced by:  fnco  5362  f1co  5471  tposfun  6313  casefun  7144  caseinj  7148  caseinl  7150  caseinr  7151  djufun  7163  djuinj  7165  ctssdccl  7170  lidlmex  13971
  Copyright terms: Public domain W3C validator