Step | Hyp | Ref
| Expression |
1 | | dmcoss 4873 |
. . . . 5
⊢ dom
(𝐹 ∘ 𝐺) ⊆ dom 𝐺 |
2 | | funmo 5203 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → ∃*𝑦 𝑧𝐹𝑦) |
3 | 2 | alrimiv 1862 |
. . . . . . . . 9
⊢ (Fun
𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦) |
4 | 3 | ralrimivw 2540 |
. . . . . . . 8
⊢ (Fun
𝐹 → ∀𝑥 ∈ dom 𝐺∀𝑧∃*𝑦 𝑧𝐹𝑦) |
5 | | dffun8 5216 |
. . . . . . . . 9
⊢ (Fun
𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧)) |
6 | 5 | simprbi 273 |
. . . . . . . 8
⊢ (Fun
𝐺 → ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧) |
7 | 4, 6 | anim12ci 337 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺∀𝑧∃*𝑦 𝑧𝐹𝑦)) |
8 | | r19.26 2592 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) ↔ (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺∀𝑧∃*𝑦 𝑧𝐹𝑦)) |
9 | 7, 8 | sylibr 133 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦)) |
10 | | nfv 1516 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥𝐺𝑧 |
11 | 10 | euexex 2099 |
. . . . . . 7
⊢
((∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
12 | 11 | ralimi 2529 |
. . . . . 6
⊢
(∀𝑥 ∈
dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∀𝑥 ∈ dom 𝐺∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
13 | 9, 12 | syl 14 |
. . . . 5
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
14 | | ssralv 3206 |
. . . . 5
⊢ (dom
(𝐹 ∘ 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦) → ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦))) |
15 | 1, 13, 14 | mpsyl 65 |
. . . 4
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
16 | | df-br 3983 |
. . . . . . 7
⊢ (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝐹 ∘ 𝐺)) |
17 | | df-co 4613 |
. . . . . . . 8
⊢ (𝐹 ∘ 𝐺) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} |
18 | 17 | eleq2i 2233 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ (𝐹 ∘ 𝐺) ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)}) |
19 | | opabid 4235 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)} ↔ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
20 | 16, 18, 19 | 3bitri 205 |
. . . . . 6
⊢ (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
21 | 20 | mobii 2051 |
. . . . 5
⊢
(∃*𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
22 | 21 | ralbii 2472 |
. . . 4
⊢
(∀𝑥 ∈
dom (𝐹 ∘ 𝐺)∃*𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦∃𝑧(𝑥𝐺𝑧 ∧ 𝑧𝐹𝑦)) |
23 | 15, 22 | sylibr 133 |
. . 3
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦 𝑥(𝐹 ∘ 𝐺)𝑦) |
24 | | relco 5102 |
. . 3
⊢ Rel
(𝐹 ∘ 𝐺) |
25 | 23, 24 | jctil 310 |
. 2
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → (Rel (𝐹 ∘ 𝐺) ∧ ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦 𝑥(𝐹 ∘ 𝐺)𝑦)) |
26 | | dffun7 5215 |
. 2
⊢ (Fun
(𝐹 ∘ 𝐺) ↔ (Rel (𝐹 ∘ 𝐺) ∧ ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∃*𝑦 𝑥(𝐹 ∘ 𝐺)𝑦)) |
27 | 25, 26 | sylibr 133 |
1
⊢ ((Fun
𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) |