ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funco GIF version

Theorem funco 5228
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4873 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐺
2 funmo 5203 . . . . . . . . . 10 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1862 . . . . . . . . 9 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
43ralrimivw 2540 . . . . . . . 8 (Fun 𝐹 → ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦)
5 dffun8 5216 . . . . . . . . 9 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧))
65simprbi 273 . . . . . . . 8 (Fun 𝐺 → ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧)
74, 6anim12ci 337 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺) → (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
8 r19.26 2592 . . . . . . 7 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) ↔ (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
97, 8sylibr 133 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦))
10 nfv 1516 . . . . . . . 8 𝑦 𝑥𝐺𝑧
1110euexex 2099 . . . . . . 7 ((∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
1211ralimi 2529 . . . . . 6 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
139, 12syl 14 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
14 ssralv 3206 . . . . 5 (dom (𝐹𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)))
151, 13, 14mpsyl 65 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
16 df-br 3983 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺))
17 df-co 4613 . . . . . . . 8 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
1817eleq2i 2233 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
19 opabid 4235 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2016, 18, 193bitri 205 . . . . . 6 (𝑥(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2120mobii 2051 . . . . 5 (∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2221ralbii 2472 . . . 4 (∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2315, 22sylibr 133 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦)
24 relco 5102 . . 3 Rel (𝐹𝐺)
2523, 24jctil 310 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
26 dffun7 5215 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
2725, 26sylibr 133 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  wral 2444  wss 3116  cop 3579   class class class wbr 3982  {copab 4042  dom cdm 4604  ccom 4608  Rel wrel 4609  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190
This theorem is referenced by:  fnco  5296  f1co  5405  tposfun  6228  casefun  7050  caseinj  7054  caseinl  7056  caseinr  7057  djufun  7069  djuinj  7071  ctssdccl  7076
  Copyright terms: Public domain W3C validator