ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftval GIF version

Theorem fliftval 5876
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftval.4 (𝑥 = 𝑌𝐴 = 𝐶)
fliftval.5 (𝑥 = 𝑌𝐵 = 𝐷)
fliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
fliftval ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝑌   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftval
StepHypRef Expression
1 fliftval.6 . . 3 (𝜑 → Fun 𝐹)
21adantr 276 . 2 ((𝜑𝑌𝑋) → Fun 𝐹)
3 simpr 110 . . . 4 ((𝜑𝑌𝑋) → 𝑌𝑋)
4 eqidd 2207 . . . . 5 (𝜑𝐷 = 𝐷)
5 eqidd 2207 . . . . 5 (𝑌𝑋𝐶 = 𝐶)
64, 5anim12ci 339 . . . 4 ((𝜑𝑌𝑋) → (𝐶 = 𝐶𝐷 = 𝐷))
7 fliftval.4 . . . . . . 7 (𝑥 = 𝑌𝐴 = 𝐶)
87eqeq2d 2218 . . . . . 6 (𝑥 = 𝑌 → (𝐶 = 𝐴𝐶 = 𝐶))
9 fliftval.5 . . . . . . 7 (𝑥 = 𝑌𝐵 = 𝐷)
109eqeq2d 2218 . . . . . 6 (𝑥 = 𝑌 → (𝐷 = 𝐵𝐷 = 𝐷))
118, 10anbi12d 473 . . . . 5 (𝑥 = 𝑌 → ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐶 = 𝐶𝐷 = 𝐷)))
1211rspcev 2878 . . . 4 ((𝑌𝑋 ∧ (𝐶 = 𝐶𝐷 = 𝐷)) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
133, 6, 12syl2anc 411 . . 3 ((𝜑𝑌𝑋) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
14 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
15 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
16 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
1714, 15, 16fliftel 5869 . . . 4 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1817adantr 276 . . 3 ((𝜑𝑌𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1913, 18mpbird 167 . 2 ((𝜑𝑌𝑋) → 𝐶𝐹𝐷)
20 funbrfv 5624 . 2 (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹𝐶) = 𝐷))
212, 19, 20sylc 62 1 ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  cop 3637   class class class wbr 4047  cmpt 4109  ran crn 4680  Fun wfun 5270  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fv 5284
This theorem is referenced by:  qliftval  6715
  Copyright terms: Public domain W3C validator