| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftval | GIF version | ||
| Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| fliftval.4 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) |
| fliftval.5 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| fliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| fliftval | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fliftval.6 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → Fun 𝐹) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
| 4 | eqidd 2210 | . . . . 5 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 5 | eqidd 2210 | . . . . 5 ⊢ (𝑌 ∈ 𝑋 → 𝐶 = 𝐶) | |
| 6 | 4, 5 | anim12ci 339 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) |
| 7 | fliftval.4 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) | |
| 8 | 7 | eqeq2d 2221 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐶)) |
| 9 | fliftval.5 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 10 | 9 | eqeq2d 2221 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐷 = 𝐵 ↔ 𝐷 = 𝐷)) |
| 11 | 8, 10 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷))) |
| 12 | 11 | rspcev 2887 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 13 | 3, 6, 12 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 14 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 15 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 16 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 17 | 14, 15, 16 | fliftel 5890 | . . . 4 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 19 | 13, 18 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝐶𝐹𝐷) |
| 20 | funbrfv 5644 | . 2 ⊢ (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹‘𝐶) = 𝐷)) | |
| 21 | 2, 19, 20 | sylc 62 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 〈cop 3649 class class class wbr 4062 ↦ cmpt 4124 ran crn 4697 Fun wfun 5288 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fv 5302 |
| This theorem is referenced by: qliftval 6738 |
| Copyright terms: Public domain | W3C validator |