| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftval | GIF version | ||
| Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| fliftval.4 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) |
| fliftval.5 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| fliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| fliftval | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fliftval.6 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → Fun 𝐹) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
| 4 | eqidd 2197 | . . . . 5 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 5 | eqidd 2197 | . . . . 5 ⊢ (𝑌 ∈ 𝑋 → 𝐶 = 𝐶) | |
| 6 | 4, 5 | anim12ci 339 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) |
| 7 | fliftval.4 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) | |
| 8 | 7 | eqeq2d 2208 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐶)) |
| 9 | fliftval.5 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 10 | 9 | eqeq2d 2208 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐷 = 𝐵 ↔ 𝐷 = 𝐷)) |
| 11 | 8, 10 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷))) |
| 12 | 11 | rspcev 2868 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 13 | 3, 6, 12 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 14 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 15 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 16 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 17 | 14, 15, 16 | fliftel 5840 | . . . 4 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 19 | 13, 18 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝐶𝐹𝐷) |
| 20 | funbrfv 5599 | . 2 ⊢ (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹‘𝐶) = 𝐷)) | |
| 21 | 2, 19, 20 | sylc 62 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 〈cop 3625 class class class wbr 4033 ↦ cmpt 4094 ran crn 4664 Fun wfun 5252 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 |
| This theorem is referenced by: qliftval 6680 |
| Copyright terms: Public domain | W3C validator |