ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil GIF version

Theorem ex-ceil 15288
Description: Example for df-ceil 10343. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 15287 . 2 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
2 3z 9349 . . . . . . 7 3 ∈ ℤ
3 2nn 9146 . . . . . . 7 2 ∈ ℕ
4 znq 9692 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
52, 3, 4mp2an 426 . . . . . 6 (3 / 2) ∈ ℚ
6 qnegcl 9704 . . . . . 6 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
75, 6ax-mp 5 . . . . 5 -(3 / 2) ∈ ℚ
8 ceilqval 10380 . . . . 5 (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)))
97, 8ax-mp 5 . . . 4 (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))
10 qcn 9702 . . . . . . . . . . 11 ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ)
115, 10ax-mp 5 . . . . . . . . . 10 (3 / 2) ∈ ℂ
1211negnegi 8291 . . . . . . . . 9 --(3 / 2) = (3 / 2)
1312eqcomi 2197 . . . . . . . 8 (3 / 2) = --(3 / 2)
1413fveq2i 5558 . . . . . . 7 (⌊‘(3 / 2)) = (⌊‘--(3 / 2))
1514eqeq1i 2201 . . . . . 6 ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1)
1615biimpi 120 . . . . 5 ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1)
1716negeqd 8216 . . . 4 ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1)
189, 17eqtrid 2238 . . 3 ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1)
19 ceilqval 10380 . . . . 5 ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)))
205, 19ax-mp 5 . . . 4 (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))
21 negeq 8214 . . . . 5 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2)
22 2cn 9055 . . . . . 6 2 ∈ ℂ
2322negnegi 8291 . . . . 5 --2 = 2
2421, 23eqtrdi 2242 . . . 4 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2)
2520, 24eqtrid 2238 . . 3 ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2)
2618, 25anim12ci 339 . 2 (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1))
271, 26ax-mp 5 1 ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  cc 7872  1c1 7875  -cneg 8193   / cdiv 8693  cn 8984  2c2 9035  3c3 9036  cz 9320  cq 9687  cfl 10340  cceil 10341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-ceil 10343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator