ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil GIF version

Theorem ex-ceil 11011
Description: Example for df-ceil 9581. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 11010 . 2 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
2 3z 8689 . . . . . . 7 3 ∈ ℤ
3 2nn 8488 . . . . . . 7 2 ∈ ℕ
4 znq 9018 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
52, 3, 4mp2an 417 . . . . . 6 (3 / 2) ∈ ℚ
6 qnegcl 9030 . . . . . 6 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
75, 6ax-mp 7 . . . . 5 -(3 / 2) ∈ ℚ
8 ceilqval 9616 . . . . 5 (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)))
97, 8ax-mp 7 . . . 4 (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))
10 qcn 9028 . . . . . . . . . . 11 ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ)
115, 10ax-mp 7 . . . . . . . . . 10 (3 / 2) ∈ ℂ
1211negnegi 7673 . . . . . . . . 9 --(3 / 2) = (3 / 2)
1312eqcomi 2089 . . . . . . . 8 (3 / 2) = --(3 / 2)
1413fveq2i 5259 . . . . . . 7 (⌊‘(3 / 2)) = (⌊‘--(3 / 2))
1514eqeq1i 2092 . . . . . 6 ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1)
1615biimpi 118 . . . . 5 ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1)
1716negeqd 7598 . . . 4 ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1)
189, 17syl5eq 2129 . . 3 ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1)
19 ceilqval 9616 . . . . 5 ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)))
205, 19ax-mp 7 . . . 4 (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))
21 negeq 7596 . . . . 5 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2)
22 2cn 8405 . . . . . 6 2 ∈ ℂ
2322negnegi 7673 . . . . 5 --2 = 2
2421, 23syl6eq 2133 . . . 4 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2)
2520, 24syl5eq 2129 . . 3 ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2)
2618, 25anim12ci 332 . 2 (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1))
271, 26ax-mp 7 1 ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1287  wcel 1436  cfv 4972  (class class class)co 5594  cc 7269  1c1 7272  -cneg 7575   / cdiv 8055  cn 8334  2c2 8384  3c3 8385  cz 8660  cq 9013  cfl 9578  cceil 9579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-mulrcl 7365  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-precex 7376  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-apti 7381  ax-pre-ltadd 7382  ax-pre-mulgt0 7383  ax-pre-mulext 7384  ax-arch 7385
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-po 4090  df-iso 4091  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-reap 7970  df-ap 7977  df-div 8056  df-inn 8335  df-2 8393  df-3 8394  df-4 8395  df-n0 8584  df-z 8661  df-q 9014  df-rp 9044  df-fl 9580  df-ceil 9581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator