ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil GIF version

Theorem ex-ceil 16000
Description: Example for df-ceil 10458. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 15999 . 2 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
2 3z 9443 . . . . . . 7 3 ∈ ℤ
3 2nn 9240 . . . . . . 7 2 ∈ ℕ
4 znq 9787 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
52, 3, 4mp2an 426 . . . . . 6 (3 / 2) ∈ ℚ
6 qnegcl 9799 . . . . . 6 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
75, 6ax-mp 5 . . . . 5 -(3 / 2) ∈ ℚ
8 ceilqval 10495 . . . . 5 (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)))
97, 8ax-mp 5 . . . 4 (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))
10 qcn 9797 . . . . . . . . . . 11 ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ)
115, 10ax-mp 5 . . . . . . . . . 10 (3 / 2) ∈ ℂ
1211negnegi 8384 . . . . . . . . 9 --(3 / 2) = (3 / 2)
1312eqcomi 2213 . . . . . . . 8 (3 / 2) = --(3 / 2)
1413fveq2i 5606 . . . . . . 7 (⌊‘(3 / 2)) = (⌊‘--(3 / 2))
1514eqeq1i 2217 . . . . . 6 ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1)
1615biimpi 120 . . . . 5 ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1)
1716negeqd 8309 . . . 4 ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1)
189, 17eqtrid 2254 . . 3 ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1)
19 ceilqval 10495 . . . . 5 ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)))
205, 19ax-mp 5 . . . 4 (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))
21 negeq 8307 . . . . 5 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2)
22 2cn 9149 . . . . . 6 2 ∈ ℂ
2322negnegi 8384 . . . . 5 --2 = 2
2421, 23eqtrdi 2258 . . . 4 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2)
2520, 24eqtrid 2254 . . 3 ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2)
2618, 25anim12ci 339 . 2 (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1))
271, 26ax-mp 5 1 ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  cc 7965  1c1 7968  -cneg 8286   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  cz 9414  cq 9782  cfl 10455  cceil 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-ceil 10458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator