| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-ceil | GIF version | ||
| Description: Example for df-ceil 10421. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-ceil | ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-fl 15735 | . 2 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | |
| 2 | 3z 9408 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 3 | 2nn 9205 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 4 | znq 9752 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . 6 ⊢ (3 / 2) ∈ ℚ |
| 6 | qnegcl 9764 | . . . . . 6 ⊢ ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ -(3 / 2) ∈ ℚ |
| 8 | ceilqval 10458 | . . . . 5 ⊢ (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)) |
| 10 | qcn 9762 | . . . . . . . . . . 11 ⊢ ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ) | |
| 11 | 5, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (3 / 2) ∈ ℂ |
| 12 | 11 | negnegi 8349 | . . . . . . . . 9 ⊢ --(3 / 2) = (3 / 2) |
| 13 | 12 | eqcomi 2210 | . . . . . . . 8 ⊢ (3 / 2) = --(3 / 2) |
| 14 | 13 | fveq2i 5586 | . . . . . . 7 ⊢ (⌊‘(3 / 2)) = (⌊‘--(3 / 2)) |
| 15 | 14 | eqeq1i 2214 | . . . . . 6 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1) |
| 16 | 15 | biimpi 120 | . . . . 5 ⊢ ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1) |
| 17 | 16 | negeqd 8274 | . . . 4 ⊢ ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1) |
| 18 | 9, 17 | eqtrid 2251 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1) |
| 19 | ceilqval 10458 | . . . . 5 ⊢ ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))) | |
| 20 | 5, 19 | ax-mp 5 | . . . 4 ⊢ (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)) |
| 21 | negeq 8272 | . . . . 5 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2) | |
| 22 | 2cn 9114 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 23 | 22 | negnegi 8349 | . . . . 5 ⊢ --2 = 2 |
| 24 | 21, 23 | eqtrdi 2255 | . . . 4 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2) |
| 25 | 20, 24 | eqtrid 2251 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2) |
| 26 | 18, 25 | anim12ci 339 | . 2 ⊢ (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)) |
| 27 | 1, 26 | ax-mp 5 | 1 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 1c1 7933 -cneg 8251 / cdiv 8752 ℕcn 9043 2c2 9094 3c3 9095 ℤcz 9379 ℚcq 9747 ⌊cfl 10418 ⌈cceil 10419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-q 9748 df-rp 9783 df-fl 10420 df-ceil 10421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |