ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-ceil GIF version

Theorem ex-ceil 16114
Description: Example for df-ceil 10499. (Contributed by AV, 4-Sep-2021.)
Assertion
Ref Expression
ex-ceil ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)

Proof of Theorem ex-ceil
StepHypRef Expression
1 ex-fl 16113 . 2 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
2 3z 9483 . . . . . . 7 3 ∈ ℤ
3 2nn 9280 . . . . . . 7 2 ∈ ℕ
4 znq 9827 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ)
52, 3, 4mp2an 426 . . . . . 6 (3 / 2) ∈ ℚ
6 qnegcl 9839 . . . . . 6 ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ)
75, 6ax-mp 5 . . . . 5 -(3 / 2) ∈ ℚ
8 ceilqval 10536 . . . . 5 (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)))
97, 8ax-mp 5 . . . 4 (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))
10 qcn 9837 . . . . . . . . . . 11 ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ)
115, 10ax-mp 5 . . . . . . . . . 10 (3 / 2) ∈ ℂ
1211negnegi 8424 . . . . . . . . 9 --(3 / 2) = (3 / 2)
1312eqcomi 2233 . . . . . . . 8 (3 / 2) = --(3 / 2)
1413fveq2i 5632 . . . . . . 7 (⌊‘(3 / 2)) = (⌊‘--(3 / 2))
1514eqeq1i 2237 . . . . . 6 ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1)
1615biimpi 120 . . . . 5 ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1)
1716negeqd 8349 . . . 4 ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1)
189, 17eqtrid 2274 . . 3 ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1)
19 ceilqval 10536 . . . . 5 ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)))
205, 19ax-mp 5 . . . 4 (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))
21 negeq 8347 . . . . 5 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2)
22 2cn 9189 . . . . . 6 2 ∈ ℂ
2322negnegi 8424 . . . . 5 --2 = 2
2421, 23eqtrdi 2278 . . . 4 ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2)
2520, 24eqtrid 2274 . . 3 ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2)
2618, 25anim12ci 339 . 2 (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1))
271, 26ax-mp 5 1 ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  cc 8005  1c1 8008  -cneg 8326   / cdiv 8827  cn 9118  2c2 9169  3c3 9170  cz 9454  cq 9822  cfl 10496  cceil 10497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498  df-ceil 10499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator