![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-ceil | GIF version |
Description: Example for df-ceil 9581. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-ceil | ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-fl 11010 | . 2 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | |
2 | 3z 8689 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
3 | 2nn 8488 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
4 | znq 9018 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ) | |
5 | 2, 3, 4 | mp2an 417 | . . . . . 6 ⊢ (3 / 2) ∈ ℚ |
6 | qnegcl 9030 | . . . . . 6 ⊢ ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ) | |
7 | 5, 6 | ax-mp 7 | . . . . 5 ⊢ -(3 / 2) ∈ ℚ |
8 | ceilqval 9616 | . . . . 5 ⊢ (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))) | |
9 | 7, 8 | ax-mp 7 | . . . 4 ⊢ (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)) |
10 | qcn 9028 | . . . . . . . . . . 11 ⊢ ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ) | |
11 | 5, 10 | ax-mp 7 | . . . . . . . . . 10 ⊢ (3 / 2) ∈ ℂ |
12 | 11 | negnegi 7673 | . . . . . . . . 9 ⊢ --(3 / 2) = (3 / 2) |
13 | 12 | eqcomi 2089 | . . . . . . . 8 ⊢ (3 / 2) = --(3 / 2) |
14 | 13 | fveq2i 5259 | . . . . . . 7 ⊢ (⌊‘(3 / 2)) = (⌊‘--(3 / 2)) |
15 | 14 | eqeq1i 2092 | . . . . . 6 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1) |
16 | 15 | biimpi 118 | . . . . 5 ⊢ ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1) |
17 | 16 | negeqd 7598 | . . . 4 ⊢ ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1) |
18 | 9, 17 | syl5eq 2129 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1) |
19 | ceilqval 9616 | . . . . 5 ⊢ ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))) | |
20 | 5, 19 | ax-mp 7 | . . . 4 ⊢ (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)) |
21 | negeq 7596 | . . . . 5 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2) | |
22 | 2cn 8405 | . . . . . 6 ⊢ 2 ∈ ℂ | |
23 | 22 | negnegi 7673 | . . . . 5 ⊢ --2 = 2 |
24 | 21, 23 | syl6eq 2133 | . . . 4 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2) |
25 | 20, 24 | syl5eq 2129 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2) |
26 | 18, 25 | anim12ci 332 | . 2 ⊢ (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)) |
27 | 1, 26 | ax-mp 7 | 1 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1287 ∈ wcel 1436 ‘cfv 4972 (class class class)co 5594 ℂcc 7269 1c1 7272 -cneg 7575 / cdiv 8055 ℕcn 8334 2c2 8384 3c3 8385 ℤcz 8660 ℚcq 9013 ⌊cfl 9578 ⌈cceil 9579 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-mulrcl 7365 ax-addcom 7366 ax-mulcom 7367 ax-addass 7368 ax-mulass 7369 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-1rid 7373 ax-0id 7374 ax-rnegex 7375 ax-precex 7376 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-apti 7381 ax-pre-ltadd 7382 ax-pre-mulgt0 7383 ax-pre-mulext 7384 ax-arch 7385 |
This theorem depends on definitions: df-bi 115 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rmo 2363 df-rab 2364 df-v 2616 df-sbc 2829 df-csb 2922 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-iun 3709 df-br 3815 df-opab 3869 df-mpt 3870 df-id 4087 df-po 4090 df-iso 4091 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-1st 5849 df-2nd 5850 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-reap 7970 df-ap 7977 df-div 8056 df-inn 8335 df-2 8393 df-3 8394 df-4 8395 df-n0 8584 df-z 8661 df-q 9014 df-rp 9044 df-fl 9580 df-ceil 9581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |