| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-ceil | GIF version | ||
| Description: Example for df-ceil 10499. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-ceil | ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-fl 16113 | . 2 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | |
| 2 | 3z 9483 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 3 | 2nn 9280 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 4 | znq 9827 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . 6 ⊢ (3 / 2) ∈ ℚ |
| 6 | qnegcl 9839 | . . . . . 6 ⊢ ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ -(3 / 2) ∈ ℚ |
| 8 | ceilqval 10536 | . . . . 5 ⊢ (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)) |
| 10 | qcn 9837 | . . . . . . . . . . 11 ⊢ ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ) | |
| 11 | 5, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (3 / 2) ∈ ℂ |
| 12 | 11 | negnegi 8424 | . . . . . . . . 9 ⊢ --(3 / 2) = (3 / 2) |
| 13 | 12 | eqcomi 2233 | . . . . . . . 8 ⊢ (3 / 2) = --(3 / 2) |
| 14 | 13 | fveq2i 5632 | . . . . . . 7 ⊢ (⌊‘(3 / 2)) = (⌊‘--(3 / 2)) |
| 15 | 14 | eqeq1i 2237 | . . . . . 6 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1) |
| 16 | 15 | biimpi 120 | . . . . 5 ⊢ ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1) |
| 17 | 16 | negeqd 8349 | . . . 4 ⊢ ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1) |
| 18 | 9, 17 | eqtrid 2274 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1) |
| 19 | ceilqval 10536 | . . . . 5 ⊢ ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))) | |
| 20 | 5, 19 | ax-mp 5 | . . . 4 ⊢ (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)) |
| 21 | negeq 8347 | . . . . 5 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2) | |
| 22 | 2cn 9189 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 23 | 22 | negnegi 8424 | . . . . 5 ⊢ --2 = 2 |
| 24 | 21, 23 | eqtrdi 2278 | . . . 4 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2) |
| 25 | 20, 24 | eqtrid 2274 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2) |
| 26 | 18, 25 | anim12ci 339 | . 2 ⊢ (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)) |
| 27 | 1, 26 | ax-mp 5 | 1 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 1c1 8008 -cneg 8326 / cdiv 8827 ℕcn 9118 2c2 9169 3c3 9170 ℤcz 9454 ℚcq 9822 ⌊cfl 10496 ⌈cceil 10497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 df-ceil 10499 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |