Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-ceil | GIF version |
Description: Example for df-ceil 10206. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-ceil | ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-fl 13606 | . 2 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | |
2 | 3z 9220 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
3 | 2nn 9018 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
4 | znq 9562 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ) | |
5 | 2, 3, 4 | mp2an 423 | . . . . . 6 ⊢ (3 / 2) ∈ ℚ |
6 | qnegcl 9574 | . . . . . 6 ⊢ ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ -(3 / 2) ∈ ℚ |
8 | ceilqval 10241 | . . . . 5 ⊢ (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)) |
10 | qcn 9572 | . . . . . . . . . . 11 ⊢ ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ) | |
11 | 5, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (3 / 2) ∈ ℂ |
12 | 11 | negnegi 8168 | . . . . . . . . 9 ⊢ --(3 / 2) = (3 / 2) |
13 | 12 | eqcomi 2169 | . . . . . . . 8 ⊢ (3 / 2) = --(3 / 2) |
14 | 13 | fveq2i 5489 | . . . . . . 7 ⊢ (⌊‘(3 / 2)) = (⌊‘--(3 / 2)) |
15 | 14 | eqeq1i 2173 | . . . . . 6 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1) |
16 | 15 | biimpi 119 | . . . . 5 ⊢ ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1) |
17 | 16 | negeqd 8093 | . . . 4 ⊢ ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1) |
18 | 9, 17 | syl5eq 2211 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1) |
19 | ceilqval 10241 | . . . . 5 ⊢ ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))) | |
20 | 5, 19 | ax-mp 5 | . . . 4 ⊢ (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)) |
21 | negeq 8091 | . . . . 5 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2) | |
22 | 2cn 8928 | . . . . . 6 ⊢ 2 ∈ ℂ | |
23 | 22 | negnegi 8168 | . . . . 5 ⊢ --2 = 2 |
24 | 21, 23 | eqtrdi 2215 | . . . 4 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2) |
25 | 20, 24 | syl5eq 2211 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2) |
26 | 18, 25 | anim12ci 337 | . 2 ⊢ (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)) |
27 | 1, 26 | ax-mp 5 | 1 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 1c1 7754 -cneg 8070 / cdiv 8568 ℕcn 8857 2c2 8908 3c3 8909 ℤcz 9191 ℚcq 9557 ⌊cfl 10203 ⌈cceil 10204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 df-fl 10205 df-ceil 10206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |