![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-ceil | GIF version |
Description: Example for df-ceil 10340. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-ceil | ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-fl 15217 | . 2 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | |
2 | 3z 9346 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
3 | 2nn 9143 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
4 | znq 9689 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℕ) → (3 / 2) ∈ ℚ) | |
5 | 2, 3, 4 | mp2an 426 | . . . . . 6 ⊢ (3 / 2) ∈ ℚ |
6 | qnegcl 9701 | . . . . . 6 ⊢ ((3 / 2) ∈ ℚ → -(3 / 2) ∈ ℚ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ -(3 / 2) ∈ ℚ |
8 | ceilqval 10377 | . . . . 5 ⊢ (-(3 / 2) ∈ ℚ → (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (⌈‘-(3 / 2)) = -(⌊‘--(3 / 2)) |
10 | qcn 9699 | . . . . . . . . . . 11 ⊢ ((3 / 2) ∈ ℚ → (3 / 2) ∈ ℂ) | |
11 | 5, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (3 / 2) ∈ ℂ |
12 | 11 | negnegi 8289 | . . . . . . . . 9 ⊢ --(3 / 2) = (3 / 2) |
13 | 12 | eqcomi 2197 | . . . . . . . 8 ⊢ (3 / 2) = --(3 / 2) |
14 | 13 | fveq2i 5557 | . . . . . . 7 ⊢ (⌊‘(3 / 2)) = (⌊‘--(3 / 2)) |
15 | 14 | eqeq1i 2201 | . . . . . 6 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (⌊‘--(3 / 2)) = 1) |
16 | 15 | biimpi 120 | . . . . 5 ⊢ ((⌊‘(3 / 2)) = 1 → (⌊‘--(3 / 2)) = 1) |
17 | 16 | negeqd 8214 | . . . 4 ⊢ ((⌊‘(3 / 2)) = 1 → -(⌊‘--(3 / 2)) = -1) |
18 | 9, 17 | eqtrid 2238 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 → (⌈‘-(3 / 2)) = -1) |
19 | ceilqval 10377 | . . . . 5 ⊢ ((3 / 2) ∈ ℚ → (⌈‘(3 / 2)) = -(⌊‘-(3 / 2))) | |
20 | 5, 19 | ax-mp 5 | . . . 4 ⊢ (⌈‘(3 / 2)) = -(⌊‘-(3 / 2)) |
21 | negeq 8212 | . . . . 5 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = --2) | |
22 | 2cn 9053 | . . . . . 6 ⊢ 2 ∈ ℂ | |
23 | 22 | negnegi 8289 | . . . . 5 ⊢ --2 = 2 |
24 | 21, 23 | eqtrdi 2242 | . . . 4 ⊢ ((⌊‘-(3 / 2)) = -2 → -(⌊‘-(3 / 2)) = 2) |
25 | 20, 24 | eqtrid 2238 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 → (⌈‘(3 / 2)) = 2) |
26 | 18, 25 | anim12ci 339 | . 2 ⊢ (((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) → ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)) |
27 | 1, 26 | ax-mp 5 | 1 ⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 1c1 7873 -cneg 8191 / cdiv 8691 ℕcn 8982 2c2 9033 3c3 9034 ℤcz 9317 ℚcq 9684 ⌊cfl 10337 ⌈cceil 10338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 df-ceil 10340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |