![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdss | GIF version |
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdss.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdss | ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdss.1 | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 14683 | . . 3 ⊢ BOUNDED 𝑦 ∈ 𝐴 |
3 | 2 | ax-bdal 14655 | . 2 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 |
4 | dfss3 3147 | . 2 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | bd0r 14662 | 1 ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 BOUNDED wbd 14649 BOUNDED wbdc 14677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-bd0 14650 ax-bdal 14655 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-ral 2460 df-in 3137 df-ss 3144 df-bdc 14678 |
This theorem is referenced by: bdeq0 14704 bdcpw 14706 bdvsn 14711 bdop 14712 bdeqsuc 14718 bj-nntrans 14788 bj-omtrans 14793 |
Copyright terms: Public domain | W3C validator |