Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss GIF version

Theorem bdss 15934
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1 BOUNDED 𝐴
Assertion
Ref Expression
bdss BOUNDED 𝑥𝐴

Proof of Theorem bdss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4 BOUNDED 𝐴
21bdeli 15916 . . 3 BOUNDED 𝑦𝐴
32ax-bdal 15888 . 2 BOUNDED𝑦𝑥 𝑦𝐴
4 dfss3 3186 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4bd0r 15895 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2177  wral 2485  wss 3170  BOUNDED wbd 15882  BOUNDED wbdc 15910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15883  ax-bdal 15888
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-in 3176  df-ss 3183  df-bdc 15911
This theorem is referenced by:  bdeq0  15937  bdcpw  15939  bdvsn  15944  bdop  15945  bdeqsuc  15951  bj-nntrans  16021  bj-omtrans  16026
  Copyright terms: Public domain W3C validator