Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss GIF version

Theorem bdss 15426
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1 BOUNDED 𝐴
Assertion
Ref Expression
bdss BOUNDED 𝑥𝐴

Proof of Theorem bdss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4 BOUNDED 𝐴
21bdeli 15408 . . 3 BOUNDED 𝑦𝐴
32ax-bdal 15380 . 2 BOUNDED𝑦𝑥 𝑦𝐴
4 dfss3 3170 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4bd0r 15387 1 BOUNDED 𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2164  wral 2472  wss 3154  BOUNDED wbd 15374  BOUNDED wbdc 15402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15375  ax-bdal 15380
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-in 3160  df-ss 3167  df-bdc 15403
This theorem is referenced by:  bdeq0  15429  bdcpw  15431  bdvsn  15436  bdop  15437  bdeqsuc  15443  bj-nntrans  15513  bj-omtrans  15518
  Copyright terms: Public domain W3C validator