![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdss | GIF version |
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdss.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdss | ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdss.1 | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 15051 | . . 3 ⊢ BOUNDED 𝑦 ∈ 𝐴 |
3 | 2 | ax-bdal 15023 | . 2 ⊢ BOUNDED ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 |
4 | dfss3 3160 | . 2 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | bd0r 15030 | 1 ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 BOUNDED wbd 15017 BOUNDED wbdc 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-bd0 15018 ax-bdal 15023 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-ral 2473 df-in 3150 df-ss 3157 df-bdc 15046 |
This theorem is referenced by: bdeq0 15072 bdcpw 15074 bdvsn 15079 bdop 15080 bdeqsuc 15086 bj-nntrans 15156 bj-omtrans 15161 |
Copyright terms: Public domain | W3C validator |