![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciin | GIF version |
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdciun.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdciin | ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 15051 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
3 | 2 | ax-bdal 15023 | . . 3 ⊢ BOUNDED ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
4 | 3 | bdcab 15054 | . 2 ⊢ BOUNDED {𝑧 ∣ ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
5 | df-iin 3904 | . 2 ⊢ ∩ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
6 | 4, 5 | bdceqir 15049 | 1 ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 {cab 2175 ∀wral 2468 ∩ ciin 3902 BOUNDED wbdc 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 ax-bd0 15018 ax-bdal 15023 ax-bdsb 15027 |
This theorem depends on definitions: df-bi 117 df-clab 2176 df-cleq 2182 df-clel 2185 df-iin 3904 df-bdc 15046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |