Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin GIF version

Theorem bdciin 13914
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1 BOUNDED 𝐴
Assertion
Ref Expression
bdciin BOUNDED 𝑥𝑦 𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bdciin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5 BOUNDED 𝐴
21bdeli 13881 . . . 4 BOUNDED 𝑧𝐴
32ax-bdal 13853 . . 3 BOUNDED𝑥𝑦 𝑧𝐴
43bdcab 13884 . 2 BOUNDED {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
5 df-iin 3876 . 2 𝑥𝑦 𝐴 = {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
64, 5bdceqir 13879 1 BOUNDED 𝑥𝑦 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2141  {cab 2156  wral 2448   ciin 3874  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdal 13853  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-iin 3876  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator