Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin GIF version

Theorem bdciin 15525
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1 BOUNDED 𝐴
Assertion
Ref Expression
bdciin BOUNDED 𝑥𝑦 𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bdciin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5 BOUNDED 𝐴
21bdeli 15492 . . . 4 BOUNDED 𝑧𝐴
32ax-bdal 15464 . . 3 BOUNDED𝑥𝑦 𝑧𝐴
43bdcab 15495 . 2 BOUNDED {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
5 df-iin 3919 . 2 𝑥𝑦 𝐴 = {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
64, 5bdceqir 15490 1 BOUNDED 𝑥𝑦 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2167  {cab 2182  wral 2475   ciin 3917  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdal 15464  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-iin 3919  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator