![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdciin | GIF version |
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdciun.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdciin | ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdciun.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 11620 | . . . 4 ⊢ BOUNDED 𝑧 ∈ 𝐴 |
3 | 2 | ax-bdal 11592 | . . 3 ⊢ BOUNDED ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴 |
4 | 3 | bdcab 11623 | . 2 ⊢ BOUNDED {𝑧 ∣ ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} |
5 | df-iin 3731 | . 2 ⊢ ∩ 𝑥 ∈ 𝑦 𝐴 = {𝑧 ∣ ∀𝑥 ∈ 𝑦 𝑧 ∈ 𝐴} | |
6 | 4, 5 | bdceqir 11618 | 1 ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 {cab 2074 ∀wral 2359 ∩ ciin 3729 BOUNDED wbdc 11614 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 ax-bd0 11587 ax-bdal 11592 ax-bdsb 11596 |
This theorem depends on definitions: df-bi 115 df-clab 2075 df-cleq 2081 df-clel 2084 df-iin 3731 df-bdc 11615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |