Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin GIF version

Theorem bdciin 15748
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1 BOUNDED 𝐴
Assertion
Ref Expression
bdciin BOUNDED 𝑥𝑦 𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bdciin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5 BOUNDED 𝐴
21bdeli 15715 . . . 4 BOUNDED 𝑧𝐴
32ax-bdal 15687 . . 3 BOUNDED𝑥𝑦 𝑧𝐴
43bdcab 15718 . 2 BOUNDED {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
5 df-iin 3929 . 2 𝑥𝑦 𝐴 = {𝑧 ∣ ∀𝑥𝑦 𝑧𝐴}
64, 5bdceqir 15713 1 BOUNDED 𝑥𝑦 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2175  {cab 2190  wral 2483   ciin 3927  BOUNDED wbdc 15709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-bd0 15682  ax-bdal 15687  ax-bdsb 15691
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-cleq 2197  df-clel 2200  df-iin 3929  df-bdc 15710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator