Step | Hyp | Ref
| Expression |
1 | | ral0 3495 |
. . 3
⊢
∀𝑥 ∈
∅ 𝑥 ⊆
∅ |
2 | | df-suc 4331 |
. . . . . . 7
⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) |
3 | 2 | eleq2i 2224 |
. . . . . 6
⊢ (𝑥 ∈ suc 𝑧 ↔ 𝑥 ∈ (𝑧 ∪ {𝑧})) |
4 | | elun 3248 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥 ∈ 𝑧 ∨ 𝑥 ∈ {𝑧})) |
5 | | sssucid 4375 |
. . . . . . . . . 10
⊢ 𝑧 ⊆ suc 𝑧 |
6 | | sstr2 3135 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑧 → (𝑧 ⊆ suc 𝑧 → 𝑥 ⊆ suc 𝑧)) |
7 | 5, 6 | mpi 15 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝑧 → 𝑥 ⊆ suc 𝑧) |
8 | 7 | imim2i 12 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑧 → 𝑥 ⊆ suc 𝑧)) |
9 | | elsni 3578 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑧} → 𝑥 = 𝑧) |
10 | 9, 5 | eqsstrdi 3180 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧) |
11 | 10 | a1i 9 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)) |
12 | 8, 11 | jaod 707 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → ((𝑥 ∈ 𝑧 ∨ 𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧)) |
13 | 4, 12 | syl5bi 151 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧)) |
14 | 3, 13 | syl5bi 151 |
. . . . 5
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ suc 𝑧 → 𝑥 ⊆ suc 𝑧)) |
15 | 14 | ralimi2 2517 |
. . . 4
⊢
(∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧) |
16 | 15 | rgenw 2512 |
. . 3
⊢
∀𝑧 ∈
ω (∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧) |
17 | | bdcv 13394 |
. . . . . 6
⊢
BOUNDED 𝑦 |
18 | 17 | bdss 13410 |
. . . . 5
⊢
BOUNDED 𝑥 ⊆ 𝑦 |
19 | 18 | ax-bdal 13364 |
. . . 4
⊢
BOUNDED ∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 |
20 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ |
21 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧 |
22 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 |
23 | | sseq2 3152 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ∅)) |
24 | 23 | raleqbi1dv 2660 |
. . . . 5
⊢ (𝑦 = ∅ → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅)) |
25 | 24 | biimprd 157 |
. . . 4
⊢ (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ →
∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦)) |
26 | | sseq2 3152 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑧)) |
27 | 26 | raleqbi1dv 2660 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧)) |
28 | 27 | biimpd 143 |
. . . 4
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧)) |
29 | | sseq2 3152 |
. . . . . 6
⊢ (𝑦 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ suc 𝑧)) |
30 | 29 | raleqbi1dv 2660 |
. . . . 5
⊢ (𝑦 = suc 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) |
31 | 30 | biimprd 157 |
. . . 4
⊢ (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦)) |
32 | | nfcv 2299 |
. . . 4
⊢
Ⅎ𝑦𝐴 |
33 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 |
34 | | sseq2 3152 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) |
35 | 34 | raleqbi1dv 2660 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) |
36 | 35 | biimpd 143 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) |
37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 13494 |
. . 3
⊢
((∀𝑥 ∈
∅ 𝑥 ⊆ ∅
∧ ∀𝑧 ∈
ω (∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) |
38 | 1, 16, 37 | mp2an 423 |
. 2
⊢ (𝐴 ∈ ω →
∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
39 | | nfv 1508 |
. . 3
⊢
Ⅎ𝑥 𝐵 ⊆ 𝐴 |
40 | | sseq1 3151 |
. . 3
⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
41 | 39, 40 | rspc 2810 |
. 2
⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → 𝐵 ⊆ 𝐴)) |
42 | 38, 41 | syl5com 29 |
1
⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |