Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans GIF version

Theorem bj-nntrans 15443
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))

Proof of Theorem bj-nntrans
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3548 . . 3 𝑥 ∈ ∅ 𝑥 ⊆ ∅
2 df-suc 4402 . . . . . . 7 suc 𝑧 = (𝑧 ∪ {𝑧})
32eleq2i 2260 . . . . . 6 (𝑥 ∈ suc 𝑧𝑥 ∈ (𝑧 ∪ {𝑧}))
4 elun 3300 . . . . . . 7 (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥𝑧𝑥 ∈ {𝑧}))
5 sssucid 4446 . . . . . . . . . 10 𝑧 ⊆ suc 𝑧
6 sstr2 3186 . . . . . . . . . 10 (𝑥𝑧 → (𝑧 ⊆ suc 𝑧𝑥 ⊆ suc 𝑧))
75, 6mpi 15 . . . . . . . . 9 (𝑥𝑧𝑥 ⊆ suc 𝑧)
87imim2i 12 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥𝑧𝑥 ⊆ suc 𝑧))
9 elsni 3636 . . . . . . . . . 10 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
109, 5eqsstrdi 3231 . . . . . . . . 9 (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)
1110a1i 9 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧))
128, 11jaod 718 . . . . . . 7 ((𝑥𝑧𝑥𝑧) → ((𝑥𝑧𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧))
134, 12biimtrid 152 . . . . . 6 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧))
143, 13biimtrid 152 . . . . 5 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
1514ralimi2 2554 . . . 4 (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
1615rgenw 2549 . . 3 𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
17 bdcv 15340 . . . . . 6 BOUNDED 𝑦
1817bdss 15356 . . . . 5 BOUNDED 𝑥𝑦
1918ax-bdal 15310 . . . 4 BOUNDED𝑥𝑦 𝑥𝑦
20 nfv 1539 . . . 4 𝑦𝑥 ∈ ∅ 𝑥 ⊆ ∅
21 nfv 1539 . . . 4 𝑦𝑥𝑧 𝑥𝑧
22 nfv 1539 . . . 4 𝑦𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧
23 sseq2 3203 . . . . . 6 (𝑦 = ∅ → (𝑥𝑦𝑥 ⊆ ∅))
2423raleqbi1dv 2702 . . . . 5 (𝑦 = ∅ → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅))
2524biimprd 158 . . . 4 (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ → ∀𝑥𝑦 𝑥𝑦))
26 sseq2 3203 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2726raleqbi1dv 2702 . . . . 5 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝑧 𝑥𝑧))
2827biimpd 144 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝑧 𝑥𝑧))
29 sseq2 3203 . . . . . 6 (𝑦 = suc 𝑧 → (𝑥𝑦𝑥 ⊆ suc 𝑧))
3029raleqbi1dv 2702 . . . . 5 (𝑦 = suc 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
3130biimprd 158 . . . 4 (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥𝑦 𝑥𝑦))
32 nfcv 2336 . . . 4 𝑦𝐴
33 nfv 1539 . . . 4 𝑦𝑥𝐴 𝑥𝐴
34 sseq2 3203 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
3534raleqbi1dv 2702 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐴))
3635biimpd 144 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝐴 𝑥𝐴))
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 15440 . . 3 ((∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ ∧ ∀𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴))
381, 16, 37mp2an 426 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
39 nfv 1539 . . 3 𝑥 𝐵𝐴
40 sseq1 3202 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
4139, 40rspc 2858 . 2 (𝐵𝐴 → (∀𝑥𝐴 𝑥𝐴𝐵𝐴))
4238, 41syl5com 29 1 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2164  wral 2472  cun 3151  wss 3153  c0 3446  {csn 3618  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by:  bj-nntrans2  15444  bj-nnelirr  15445  bj-nnen2lp  15446
  Copyright terms: Public domain W3C validator