| Step | Hyp | Ref
 | Expression | 
| 1 |   | ral0 3552 | 
. . 3
⊢
∀𝑥 ∈
∅ 𝑥 ⊆
∅ | 
| 2 |   | df-suc 4406 | 
. . . . . . 7
⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | 
| 3 | 2 | eleq2i 2263 | 
. . . . . 6
⊢ (𝑥 ∈ suc 𝑧 ↔ 𝑥 ∈ (𝑧 ∪ {𝑧})) | 
| 4 |   | elun 3304 | 
. . . . . . 7
⊢ (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥 ∈ 𝑧 ∨ 𝑥 ∈ {𝑧})) | 
| 5 |   | sssucid 4450 | 
. . . . . . . . . 10
⊢ 𝑧 ⊆ suc 𝑧 | 
| 6 |   | sstr2 3190 | 
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑧 → (𝑧 ⊆ suc 𝑧 → 𝑥 ⊆ suc 𝑧)) | 
| 7 | 5, 6 | mpi 15 | 
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝑧 → 𝑥 ⊆ suc 𝑧) | 
| 8 | 7 | imim2i 12 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑧 → 𝑥 ⊆ suc 𝑧)) | 
| 9 |   | elsni 3640 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑧} → 𝑥 = 𝑧) | 
| 10 | 9, 5 | eqsstrdi 3235 | 
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧) | 
| 11 | 10 | a1i 9 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)) | 
| 12 | 8, 11 | jaod 718 | 
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → ((𝑥 ∈ 𝑧 ∨ 𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧)) | 
| 13 | 4, 12 | biimtrid 152 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧)) | 
| 14 | 3, 13 | biimtrid 152 | 
. . . . 5
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ⊆ 𝑧) → (𝑥 ∈ suc 𝑧 → 𝑥 ⊆ suc 𝑧)) | 
| 15 | 14 | ralimi2 2557 | 
. . . 4
⊢
(∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧) | 
| 16 | 15 | rgenw 2552 | 
. . 3
⊢
∀𝑧 ∈
ω (∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧) | 
| 17 |   | bdcv 15494 | 
. . . . . 6
⊢
BOUNDED 𝑦 | 
| 18 | 17 | bdss 15510 | 
. . . . 5
⊢
BOUNDED 𝑥 ⊆ 𝑦 | 
| 19 | 18 | ax-bdal 15464 | 
. . . 4
⊢
BOUNDED ∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 | 
| 20 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ | 
| 21 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧 | 
| 22 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 | 
| 23 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑦 = ∅ → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ ∅)) | 
| 24 | 23 | raleqbi1dv 2705 | 
. . . . 5
⊢ (𝑦 = ∅ → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅)) | 
| 25 | 24 | biimprd 158 | 
. . . 4
⊢ (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ →
∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦)) | 
| 26 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑧)) | 
| 27 | 26 | raleqbi1dv 2705 | 
. . . . 5
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧)) | 
| 28 | 27 | biimpd 144 | 
. . . 4
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝑧 𝑥 ⊆ 𝑧)) | 
| 29 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑦 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ suc 𝑧)) | 
| 30 | 29 | raleqbi1dv 2705 | 
. . . . 5
⊢ (𝑦 = suc 𝑧 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) | 
| 31 | 30 | biimprd 158 | 
. . . 4
⊢ (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦)) | 
| 32 |   | nfcv 2339 | 
. . . 4
⊢
Ⅎ𝑦𝐴 | 
| 33 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 | 
| 34 |   | sseq2 3207 | 
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐴)) | 
| 35 | 34 | raleqbi1dv 2705 | 
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) | 
| 36 | 35 | biimpd 144 | 
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝑥 ⊆ 𝑦 → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) | 
| 37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 15594 | 
. . 3
⊢
((∀𝑥 ∈
∅ 𝑥 ⊆ ∅
∧ ∀𝑧 ∈
ω (∀𝑥 ∈
𝑧 𝑥 ⊆ 𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴)) | 
| 38 | 1, 16, 37 | mp2an 426 | 
. 2
⊢ (𝐴 ∈ ω →
∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | 
| 39 |   | nfv 1542 | 
. . 3
⊢
Ⅎ𝑥 𝐵 ⊆ 𝐴 | 
| 40 |   | sseq1 3206 | 
. . 3
⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | 
| 41 | 39, 40 | rspc 2862 | 
. 2
⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → 𝐵 ⊆ 𝐴)) | 
| 42 | 38, 41 | syl5com 29 | 
1
⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |