Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans GIF version

Theorem bj-nntrans 13497
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))

Proof of Theorem bj-nntrans
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3495 . . 3 𝑥 ∈ ∅ 𝑥 ⊆ ∅
2 df-suc 4331 . . . . . . 7 suc 𝑧 = (𝑧 ∪ {𝑧})
32eleq2i 2224 . . . . . 6 (𝑥 ∈ suc 𝑧𝑥 ∈ (𝑧 ∪ {𝑧}))
4 elun 3248 . . . . . . 7 (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥𝑧𝑥 ∈ {𝑧}))
5 sssucid 4375 . . . . . . . . . 10 𝑧 ⊆ suc 𝑧
6 sstr2 3135 . . . . . . . . . 10 (𝑥𝑧 → (𝑧 ⊆ suc 𝑧𝑥 ⊆ suc 𝑧))
75, 6mpi 15 . . . . . . . . 9 (𝑥𝑧𝑥 ⊆ suc 𝑧)
87imim2i 12 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥𝑧𝑥 ⊆ suc 𝑧))
9 elsni 3578 . . . . . . . . . 10 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
109, 5eqsstrdi 3180 . . . . . . . . 9 (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)
1110a1i 9 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧))
128, 11jaod 707 . . . . . . 7 ((𝑥𝑧𝑥𝑧) → ((𝑥𝑧𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧))
134, 12syl5bi 151 . . . . . 6 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧))
143, 13syl5bi 151 . . . . 5 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
1514ralimi2 2517 . . . 4 (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
1615rgenw 2512 . . 3 𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
17 bdcv 13394 . . . . . 6 BOUNDED 𝑦
1817bdss 13410 . . . . 5 BOUNDED 𝑥𝑦
1918ax-bdal 13364 . . . 4 BOUNDED𝑥𝑦 𝑥𝑦
20 nfv 1508 . . . 4 𝑦𝑥 ∈ ∅ 𝑥 ⊆ ∅
21 nfv 1508 . . . 4 𝑦𝑥𝑧 𝑥𝑧
22 nfv 1508 . . . 4 𝑦𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧
23 sseq2 3152 . . . . . 6 (𝑦 = ∅ → (𝑥𝑦𝑥 ⊆ ∅))
2423raleqbi1dv 2660 . . . . 5 (𝑦 = ∅ → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅))
2524biimprd 157 . . . 4 (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ → ∀𝑥𝑦 𝑥𝑦))
26 sseq2 3152 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2726raleqbi1dv 2660 . . . . 5 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝑧 𝑥𝑧))
2827biimpd 143 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝑧 𝑥𝑧))
29 sseq2 3152 . . . . . 6 (𝑦 = suc 𝑧 → (𝑥𝑦𝑥 ⊆ suc 𝑧))
3029raleqbi1dv 2660 . . . . 5 (𝑦 = suc 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
3130biimprd 157 . . . 4 (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥𝑦 𝑥𝑦))
32 nfcv 2299 . . . 4 𝑦𝐴
33 nfv 1508 . . . 4 𝑦𝑥𝐴 𝑥𝐴
34 sseq2 3152 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
3534raleqbi1dv 2660 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐴))
3635biimpd 143 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝐴 𝑥𝐴))
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 13494 . . 3 ((∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ ∧ ∀𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴))
381, 16, 37mp2an 423 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
39 nfv 1508 . . 3 𝑥 𝐵𝐴
40 sseq1 3151 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
4139, 40rspc 2810 . 2 (𝐵𝐴 → (∀𝑥𝐴 𝑥𝐴𝐵𝐴))
4238, 41syl5com 29 1 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1335  wcel 2128  wral 2435  cun 3100  wss 3102  c0 3394  {csn 3560  suc csuc 4325  ωcom 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-nul 4090  ax-pr 4169  ax-un 4393  ax-bd0 13359  ax-bdor 13362  ax-bdal 13364  ax-bdex 13365  ax-bdeq 13366  ax-bdel 13367  ax-bdsb 13368  ax-bdsep 13430  ax-infvn 13487
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-suc 4331  df-iom 4549  df-bdc 13387  df-bj-ind 13473
This theorem is referenced by:  bj-nntrans2  13498  bj-nnelirr  13499  bj-nnen2lp  13500
  Copyright terms: Public domain W3C validator