Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans GIF version

Theorem bj-nntrans 11492
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))

Proof of Theorem bj-nntrans
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3379 . . 3 𝑥 ∈ ∅ 𝑥 ⊆ ∅
2 df-suc 4189 . . . . . . 7 suc 𝑧 = (𝑧 ∪ {𝑧})
32eleq2i 2154 . . . . . 6 (𝑥 ∈ suc 𝑧𝑥 ∈ (𝑧 ∪ {𝑧}))
4 elun 3139 . . . . . . 7 (𝑥 ∈ (𝑧 ∪ {𝑧}) ↔ (𝑥𝑧𝑥 ∈ {𝑧}))
5 sssucid 4233 . . . . . . . . . 10 𝑧 ⊆ suc 𝑧
6 sstr2 3030 . . . . . . . . . 10 (𝑥𝑧 → (𝑧 ⊆ suc 𝑧𝑥 ⊆ suc 𝑧))
75, 6mpi 15 . . . . . . . . 9 (𝑥𝑧𝑥 ⊆ suc 𝑧)
87imim2i 12 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥𝑧𝑥 ⊆ suc 𝑧))
9 elsni 3459 . . . . . . . . . 10 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
109, 5syl6eqss 3074 . . . . . . . . 9 (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧)
1110a1i 9 . . . . . . . 8 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ {𝑧} → 𝑥 ⊆ suc 𝑧))
128, 11jaod 672 . . . . . . 7 ((𝑥𝑧𝑥𝑧) → ((𝑥𝑧𝑥 ∈ {𝑧}) → 𝑥 ⊆ suc 𝑧))
134, 12syl5bi 150 . . . . . 6 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ (𝑧 ∪ {𝑧}) → 𝑥 ⊆ suc 𝑧))
143, 13syl5bi 150 . . . . 5 ((𝑥𝑧𝑥𝑧) → (𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
1514ralimi2 2435 . . . 4 (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
1615rgenw 2430 . . 3 𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)
17 bdcv 11385 . . . . . 6 BOUNDED 𝑦
1817bdss 11401 . . . . 5 BOUNDED 𝑥𝑦
1918ax-bdal 11355 . . . 4 BOUNDED𝑥𝑦 𝑥𝑦
20 nfv 1466 . . . 4 𝑦𝑥 ∈ ∅ 𝑥 ⊆ ∅
21 nfv 1466 . . . 4 𝑦𝑥𝑧 𝑥𝑧
22 nfv 1466 . . . 4 𝑦𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧
23 sseq2 3046 . . . . . 6 (𝑦 = ∅ → (𝑥𝑦𝑥 ⊆ ∅))
2423raleqbi1dv 2570 . . . . 5 (𝑦 = ∅ → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ ∅ 𝑥 ⊆ ∅))
2524biimprd 156 . . . 4 (𝑦 = ∅ → (∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ → ∀𝑥𝑦 𝑥𝑦))
26 sseq2 3046 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2726raleqbi1dv 2570 . . . . 5 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝑧 𝑥𝑧))
2827biimpd 142 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝑧 𝑥𝑧))
29 sseq2 3046 . . . . . 6 (𝑦 = suc 𝑧 → (𝑥𝑦𝑥 ⊆ suc 𝑧))
3029raleqbi1dv 2570 . . . . 5 (𝑦 = suc 𝑧 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧))
3130biimprd 156 . . . 4 (𝑦 = suc 𝑧 → (∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧 → ∀𝑥𝑦 𝑥𝑦))
32 nfcv 2228 . . . 4 𝑦𝐴
33 nfv 1466 . . . 4 𝑦𝑥𝐴 𝑥𝐴
34 sseq2 3046 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
3534raleqbi1dv 2570 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐴))
3635biimpd 142 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝑥𝑦 → ∀𝑥𝐴 𝑥𝐴))
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 11489 . . 3 ((∀𝑥 ∈ ∅ 𝑥 ⊆ ∅ ∧ ∀𝑧 ∈ ω (∀𝑥𝑧 𝑥𝑧 → ∀𝑥 ∈ suc 𝑧𝑥 ⊆ suc 𝑧)) → (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴))
381, 16, 37mp2an 417 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
39 nfv 1466 . . 3 𝑥 𝐵𝐴
40 sseq1 3045 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
4139, 40rspc 2716 . 2 (𝐵𝐴 → (∀𝑥𝐴 𝑥𝐴𝐵𝐴))
4238, 41syl5com 29 1 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 664   = wceq 1289  wcel 1438  wral 2359  cun 2995  wss 2997  c0 3284  {csn 3441  suc csuc 4183  ωcom 4395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-nul 3957  ax-pr 4027  ax-un 4251  ax-bd0 11350  ax-bdor 11353  ax-bdal 11355  ax-bdex 11356  ax-bdeq 11357  ax-bdel 11358  ax-bdsb 11359  ax-bdsep 11421  ax-infvn 11482
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-sn 3447  df-pr 3448  df-uni 3649  df-int 3684  df-suc 4189  df-iom 4396  df-bdc 11378  df-bj-ind 11468
This theorem is referenced by:  bj-nntrans2  11493  bj-nnelirr  11494  bj-nnen2lp  11495
  Copyright terms: Public domain W3C validator