ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-rnegex GIF version

Axiom ax-rnegex 7981
Description: Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7939. (Contributed by Eric Schmidt, 21-May-2007.)
Assertion
Ref Expression
ax-rnegex (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Axiom ax-rnegex
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cr 7871 . . 3 class
31, 2wcel 2164 . 2 wff 𝐴 ∈ ℝ
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
6 caddc 7875 . . . . 5 class +
71, 5, 6co 5918 . . . 4 class (𝐴 + 𝑥)
8 cc0 7872 . . . 4 class 0
97, 8wceq 1364 . . 3 wff (𝐴 + 𝑥) = 0
109, 4, 2wrex 2473 . 2 wff 𝑥 ∈ ℝ (𝐴 + 𝑥) = 0
113, 10wi 4 1 wff (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
Colors of variables: wff set class
This axiom is referenced by:  0re  8019  readdcan  8159  cnegexlem1  8194  cnegexlem2  8195  cnegexlem3  8196  cnegex  8197  renegcl  8280  ltadd2  8438
  Copyright terms: Public domain W3C validator