| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-rnegex | GIF version | ||
| Description: Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7946. (Contributed by Eric Schmidt, 21-May-2007.) | 
| Ref | Expression | 
|---|---|
| ax-rnegex | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 7878 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2167 | . 2 wff 𝐴 ∈ ℝ | 
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | caddc 7882 | . . . . 5 class + | |
| 7 | 1, 5, 6 | co 5922 | . . . 4 class (𝐴 + 𝑥) | 
| 8 | cc0 7879 | . . . 4 class 0 | |
| 9 | 7, 8 | wceq 1364 | . . 3 wff (𝐴 + 𝑥) = 0 | 
| 10 | 9, 4, 2 | wrex 2476 | . 2 wff ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 | 
| 11 | 3, 10 | wi 4 | 1 wff (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: 0re 8026 readdcan 8166 cnegexlem1 8201 cnegexlem2 8202 cnegexlem3 8203 cnegex 8204 renegcl 8287 ltadd2 8446 | 
| Copyright terms: Public domain | W3C validator |