ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegex GIF version

Theorem cnegex 8197
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8015 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 cnegexlem2 8195 . . . . 5 𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ
3 cnegexlem3 8196 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
43ad2ant2lr 510 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
5 ax-icn 7967 . . . . . . . . . . . . . 14 i ∈ ℂ
6 recn 8005 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ → 𝑐 ∈ ℂ)
7 mulcl 7999 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝑐 ∈ ℂ) → (i · 𝑐) ∈ ℂ)
85, 6, 7sylancr 414 . . . . . . . . . . . . 13 (𝑐 ∈ ℝ → (i · 𝑐) ∈ ℂ)
9 recn 8005 . . . . . . . . . . . . 13 (𝑑 ∈ ℝ → 𝑑 ∈ ℂ)
10 addcl 7997 . . . . . . . . . . . . 13 (((i · 𝑐) ∈ ℂ ∧ 𝑑 ∈ ℂ) → ((i · 𝑐) + 𝑑) ∈ ℂ)
118, 9, 10syl2an 289 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((i · 𝑐) + 𝑑) ∈ ℂ)
1211adantlr 477 . . . . . . . . . . 11 (((𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦) ∧ 𝑑 ∈ ℝ) → ((i · 𝑐) + 𝑑) ∈ ℂ)
1312adantll 476 . . . . . . . . . 10 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → ((i · 𝑐) + 𝑑) ∈ ℂ)
1413adantr 276 . . . . . . . . 9 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) ∧ ((𝑎 + (i · 𝑦)) + 𝑑) = 0) → ((i · 𝑐) + 𝑑) ∈ ℂ)
15 recn 8005 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
16 recn 8005 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
1715, 16anim12i 338 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ))
1817, 6anim12i 338 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ))
19 mulcl 7999 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝑏 ∈ ℂ) → (i · 𝑏) ∈ ℂ)
205, 19mpan 424 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℂ → (i · 𝑏) ∈ ℂ)
21 addcl 7997 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2220, 21sylan2 286 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2322ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
245, 7mpan 424 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℂ → (i · 𝑐) ∈ ℂ)
2524ad2antlr 489 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → (i · 𝑐) ∈ ℂ)
26 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → 𝑑 ∈ ℂ)
2723, 25, 26addassd 8042 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → (((𝑎 + (i · 𝑏)) + (i · 𝑐)) + 𝑑) = ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)))
28 simpll 527 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ ℂ)
2920ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (i · 𝑏) ∈ ℂ)
3024adantl 277 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (i · 𝑐) ∈ ℂ)
3128, 29, 30addassd 8042 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑎 + (i · 𝑏)) + (i · 𝑐)) = (𝑎 + ((i · 𝑏) + (i · 𝑐))))
32 adddi 8004 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (i · (𝑏 + 𝑐)) = ((i · 𝑏) + (i · 𝑐)))
335, 32mp3an1 1335 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (i · (𝑏 + 𝑐)) = ((i · 𝑏) + (i · 𝑐)))
3433adantll 476 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (i · (𝑏 + 𝑐)) = ((i · 𝑏) + (i · 𝑐)))
3534oveq2d 5934 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (𝑎 + (i · (𝑏 + 𝑐))) = (𝑎 + ((i · 𝑏) + (i · 𝑐))))
3631, 35eqtr4d 2229 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑎 + (i · 𝑏)) + (i · 𝑐)) = (𝑎 + (i · (𝑏 + 𝑐))))
3736adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → ((𝑎 + (i · 𝑏)) + (i · 𝑐)) = (𝑎 + (i · (𝑏 + 𝑐))))
3837oveq1d 5933 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → (((𝑎 + (i · 𝑏)) + (i · 𝑐)) + 𝑑) = ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑))
3927, 38eqtr3d 2228 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ ℂ) → ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑))
4018, 9, 39syl2an 289 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑))
4140adantlrr 483 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑))
42 oveq2 5926 . . . . . . . . . . . . . . . . 17 ((𝑏 + 𝑐) = 𝑦 → (i · (𝑏 + 𝑐)) = (i · 𝑦))
4342oveq2d 5934 . . . . . . . . . . . . . . . 16 ((𝑏 + 𝑐) = 𝑦 → (𝑎 + (i · (𝑏 + 𝑐))) = (𝑎 + (i · 𝑦)))
4443oveq1d 5933 . . . . . . . . . . . . . . 15 ((𝑏 + 𝑐) = 𝑦 → ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑) = ((𝑎 + (i · 𝑦)) + 𝑑))
4544adantl 277 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦) → ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑) = ((𝑎 + (i · 𝑦)) + 𝑑))
4645ad2antlr 489 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → ((𝑎 + (i · (𝑏 + 𝑐))) + 𝑑) = ((𝑎 + (i · 𝑦)) + 𝑑))
4741, 46eqtr2d 2227 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → ((𝑎 + (i · 𝑦)) + 𝑑) = ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)))
4847adantllr 481 . . . . . . . . . . 11 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → ((𝑎 + (i · 𝑦)) + 𝑑) = ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)))
4948eqeq1d 2202 . . . . . . . . . 10 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) → (((𝑎 + (i · 𝑦)) + 𝑑) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = 0))
5049biimpa 296 . . . . . . . . 9 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) ∧ ((𝑎 + (i · 𝑦)) + 𝑑) = 0) → ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = 0)
51 oveq2 5926 . . . . . . . . . . 11 (𝑥 = ((i · 𝑐) + 𝑑) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)))
5251eqeq1d 2202 . . . . . . . . . 10 (𝑥 = ((i · 𝑐) + 𝑑) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = 0))
5352rspcev 2864 . . . . . . . . 9 ((((i · 𝑐) + 𝑑) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑐) + 𝑑)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
5414, 50, 53syl2anc 411 . . . . . . . 8 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) ∧ 𝑑 ∈ ℝ) ∧ ((𝑎 + (i · 𝑦)) + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
55 readdcl 7998 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ) → (𝑎 + (i · 𝑦)) ∈ ℝ)
56 ax-rnegex 7981 . . . . . . . . . . 11 ((𝑎 + (i · 𝑦)) ∈ ℝ → ∃𝑑 ∈ ℝ ((𝑎 + (i · 𝑦)) + 𝑑) = 0)
5755, 56syl 14 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ) → ∃𝑑 ∈ ℝ ((𝑎 + (i · 𝑦)) + 𝑑) = 0)
5857ad2ant2rl 511 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) → ∃𝑑 ∈ ℝ ((𝑎 + (i · 𝑦)) + 𝑑) = 0)
5958adantr 276 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) → ∃𝑑 ∈ ℝ ((𝑎 + (i · 𝑦)) + 𝑑) = 0)
6054, 59r19.29a 2637 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) ∧ (𝑐 ∈ ℝ ∧ (𝑏 + 𝑐) = 𝑦)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
614, 60rexlimddv 2616 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ (i · 𝑦) ∈ ℝ)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
6261rexlimdvaa 2612 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
632, 62mpi 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
64 oveq1 5925 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
6564eqeq1d 2202 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
6665rexbidv 2495 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
6763, 66syl5ibrcom 157 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
6867rexlimivv 2617 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
691, 68syl 14 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  ici 7874   + caddc 7875   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  cnegex2  8198  addcan2  8200  0cnALT  8209  negeu  8210
  Copyright terms: Public domain W3C validator