ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl GIF version

Theorem renegcl 8282
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7983 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 recn 8007 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 df-neg 8195 . . . . . . 7 -𝐴 = (0 − 𝐴)
43eqeq1i 2201 . . . . . 6 (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥)
5 recn 8007 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 0cn 8013 . . . . . . . 8 0 ∈ ℂ
7 subadd 8224 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
86, 7mp3an1 1335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
95, 8sylan 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
104, 9bitrid 192 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
112, 10sylan2 286 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
12 eleq1a 2265 . . . . 5 (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1312adantl 277 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1411, 13sylbird 170 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
1514rexlimdva 2611 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
161, 15mpd 13 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874   + caddc 7877  cmin 8192  -cneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by:  renegcli  8283  resubcl  8285  negreb  8286  renegcld  8401  negf1o  8403  ltnegcon1  8484  ltnegcon2  8485  lenegcon1  8487  lenegcon2  8488  mullt0  8501  recexre  8599  elnnz  9330  btwnz  9439  supinfneg  9663  infsupneg  9664  supminfex  9665  ublbneg  9681  negm  9683  rpnegap  9755  negelrp  9756  xnegcl  9901  xnegneg  9902  xltnegi  9904  rexsub  9922  xnegid  9928  xnegdi  9937  xpncan  9940  xnpcan  9941  xposdif  9951  iooneg  10057  iccneg  10058  icoshftf1o  10060  crim  11005  absnid  11220  absdiflt  11239  absdifle  11240  dfabsmax  11364  max0addsup  11366  negfi  11374  minmax  11376  mincl  11377  min1inf  11378  min2inf  11379  minabs  11382  minclpr  11383  mingeb  11388  xrminrecl  11419  xrminrpcl  11420  infssuzex  12089
  Copyright terms: Public domain W3C validator