![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renegcl | GIF version |
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7654 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | recn 7677 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | df-neg 7859 | . . . . . . 7 ⊢ -𝐴 = (0 − 𝐴) | |
4 | 3 | eqeq1i 2122 | . . . . . 6 ⊢ (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥) |
5 | recn 7677 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 0cn 7682 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
7 | subadd 7888 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) | |
8 | 6, 7 | mp3an1 1285 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
9 | 5, 8 | sylan 279 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
10 | 4, 9 | syl5bb 191 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
11 | 2, 10 | sylan2 282 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
12 | eleq1a 2186 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) | |
13 | 12 | adantl 273 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) |
14 | 11, 13 | sylbird 169 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
15 | 14 | rexlimdva 2523 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
16 | 1, 15 | mpd 13 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 ∃wrex 2391 (class class class)co 5728 ℂcc 7545 ℝcr 7546 0cc0 7547 + caddc 7550 − cmin 7856 -cneg 7857 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-resscn 7637 ax-1cn 7638 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-sub 7858 df-neg 7859 |
This theorem is referenced by: renegcli 7947 resubcl 7949 negreb 7950 renegcld 8061 negf1o 8063 ltnegcon1 8144 ltnegcon2 8145 lenegcon1 8147 lenegcon2 8148 mullt0 8161 recexre 8258 elnnz 8968 btwnz 9074 supinfneg 9292 infsupneg 9293 supminfex 9294 ublbneg 9307 negm 9309 rpnegap 9375 xnegcl 9508 xnegneg 9509 xltnegi 9511 rexsub 9529 xnegid 9535 xnegdi 9544 xpncan 9547 xnpcan 9548 xposdif 9558 iooneg 9664 iccneg 9665 icoshftf1o 9667 crim 10523 absnid 10737 absdiflt 10756 absdifle 10757 dfabsmax 10881 max0addsup 10883 negfi 10891 minmax 10893 mincl 10894 min1inf 10895 min2inf 10896 minabs 10899 minclpr 10900 xrminrecl 10934 xrminrpcl 10935 infssuzex 11490 |
Copyright terms: Public domain | W3C validator |