Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcl | GIF version |
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7862 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | recn 7886 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | df-neg 8072 | . . . . . . 7 ⊢ -𝐴 = (0 − 𝐴) | |
4 | 3 | eqeq1i 2173 | . . . . . 6 ⊢ (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥) |
5 | recn 7886 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 0cn 7891 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
7 | subadd 8101 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) | |
8 | 6, 7 | mp3an1 1314 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
9 | 5, 8 | sylan 281 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
10 | 4, 9 | syl5bb 191 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
11 | 2, 10 | sylan2 284 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
12 | eleq1a 2238 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) | |
13 | 12 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) |
14 | 11, 13 | sylbird 169 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
15 | 14 | rexlimdva 2583 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
16 | 1, 15 | mpd 13 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 + caddc 7756 − cmin 8069 -cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 |
This theorem is referenced by: renegcli 8160 resubcl 8162 negreb 8163 renegcld 8278 negf1o 8280 ltnegcon1 8361 ltnegcon2 8362 lenegcon1 8364 lenegcon2 8365 mullt0 8378 recexre 8476 elnnz 9201 btwnz 9310 supinfneg 9533 infsupneg 9534 supminfex 9535 ublbneg 9551 negm 9553 rpnegap 9622 negelrp 9623 xnegcl 9768 xnegneg 9769 xltnegi 9771 rexsub 9789 xnegid 9795 xnegdi 9804 xpncan 9807 xnpcan 9808 xposdif 9818 iooneg 9924 iccneg 9925 icoshftf1o 9927 crim 10800 absnid 11015 absdiflt 11034 absdifle 11035 dfabsmax 11159 max0addsup 11161 negfi 11169 minmax 11171 mincl 11172 min1inf 11173 min2inf 11174 minabs 11177 minclpr 11178 mingeb 11183 xrminrecl 11214 xrminrpcl 11215 infssuzex 11882 |
Copyright terms: Public domain | W3C validator |