ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl GIF version

Theorem renegcl 8332
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8033 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 recn 8057 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 df-neg 8245 . . . . . . 7 -𝐴 = (0 − 𝐴)
43eqeq1i 2212 . . . . . 6 (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥)
5 recn 8057 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 0cn 8063 . . . . . . . 8 0 ∈ ℂ
7 subadd 8274 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
86, 7mp3an1 1336 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
95, 8sylan 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
104, 9bitrid 192 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
112, 10sylan2 286 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
12 eleq1a 2276 . . . . 5 (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1312adantl 277 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1411, 13sylbird 170 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
1514rexlimdva 2622 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
161, 15mpd 13 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wrex 2484  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924   + caddc 7927  cmin 8242  -cneg 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-neg 8245
This theorem is referenced by:  renegcli  8333  resubcl  8335  negreb  8336  renegcld  8451  negf1o  8453  ltnegcon1  8535  ltnegcon2  8536  lenegcon1  8538  lenegcon2  8539  mullt0  8552  recexre  8650  elnnz  9381  btwnz  9491  supinfneg  9715  infsupneg  9716  supminfex  9717  ublbneg  9733  negm  9735  rpnegap  9807  negelrp  9808  xnegcl  9953  xnegneg  9954  xltnegi  9956  rexsub  9974  xnegid  9980  xnegdi  9989  xpncan  9992  xnpcan  9993  xposdif  10003  iooneg  10109  iccneg  10110  icoshftf1o  10112  infssuzex  10374  crim  11111  absnid  11326  absdiflt  11345  absdifle  11346  dfabsmax  11470  max0addsup  11472  negfi  11481  minmax  11483  mincl  11484  min1inf  11485  min2inf  11486  minabs  11489  minclpr  11490  mingeb  11495  xrminrecl  11526  xrminrpcl  11527
  Copyright terms: Public domain W3C validator