| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | GIF version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8054 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 2 | recn 8078 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 3 | df-neg 8266 | . . . . . . 7 ⊢ -𝐴 = (0 − 𝐴) | |
| 4 | 3 | eqeq1i 2214 | . . . . . 6 ⊢ (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥) |
| 5 | recn 8078 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 0cn 8084 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 7 | subadd 8295 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) | |
| 8 | 6, 7 | mp3an1 1337 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 9 | 5, 8 | sylan 283 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 10 | 4, 9 | bitrid 192 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 11 | 2, 10 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 12 | eleq1a 2278 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) | |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) |
| 14 | 11, 13 | sylbird 170 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
| 15 | 14 | rexlimdva 2624 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
| 16 | 1, 15 | mpd 13 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 (class class class)co 5957 ℂcc 7943 ℝcr 7944 0cc0 7945 + caddc 7948 − cmin 8263 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-neg 8266 |
| This theorem is referenced by: renegcli 8354 resubcl 8356 negreb 8357 renegcld 8472 negf1o 8474 ltnegcon1 8556 ltnegcon2 8557 lenegcon1 8559 lenegcon2 8560 mullt0 8573 recexre 8671 elnnz 9402 btwnz 9512 supinfneg 9736 infsupneg 9737 supminfex 9738 ublbneg 9754 negm 9756 rpnegap 9828 negelrp 9829 xnegcl 9974 xnegneg 9975 xltnegi 9977 rexsub 9995 xnegid 10001 xnegdi 10010 xpncan 10013 xnpcan 10014 xposdif 10024 iooneg 10130 iccneg 10131 icoshftf1o 10133 infssuzex 10398 crim 11244 absnid 11459 absdiflt 11478 absdifle 11479 dfabsmax 11603 max0addsup 11605 negfi 11614 minmax 11616 mincl 11617 min1inf 11618 min2inf 11619 minabs 11622 minclpr 11623 mingeb 11628 xrminrecl 11659 xrminrpcl 11660 |
| Copyright terms: Public domain | W3C validator |