| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | GIF version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8033 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 2 | recn 8057 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 3 | df-neg 8245 | . . . . . . 7 ⊢ -𝐴 = (0 − 𝐴) | |
| 4 | 3 | eqeq1i 2212 | . . . . . 6 ⊢ (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥) |
| 5 | recn 8057 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 0cn 8063 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 7 | subadd 8274 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) | |
| 8 | 6, 7 | mp3an1 1336 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 9 | 5, 8 | sylan 283 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 10 | 4, 9 | bitrid 192 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 11 | 2, 10 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
| 12 | eleq1a 2276 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) | |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) |
| 14 | 11, 13 | sylbird 170 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
| 15 | 14 | rexlimdva 2622 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
| 16 | 1, 15 | mpd 13 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 + caddc 7927 − cmin 8242 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-neg 8245 |
| This theorem is referenced by: renegcli 8333 resubcl 8335 negreb 8336 renegcld 8451 negf1o 8453 ltnegcon1 8535 ltnegcon2 8536 lenegcon1 8538 lenegcon2 8539 mullt0 8552 recexre 8650 elnnz 9381 btwnz 9491 supinfneg 9715 infsupneg 9716 supminfex 9717 ublbneg 9733 negm 9735 rpnegap 9807 negelrp 9808 xnegcl 9953 xnegneg 9954 xltnegi 9956 rexsub 9974 xnegid 9980 xnegdi 9989 xpncan 9992 xnpcan 9993 xposdif 10003 iooneg 10109 iccneg 10110 icoshftf1o 10112 infssuzex 10374 crim 11111 absnid 11326 absdiflt 11345 absdifle 11346 dfabsmax 11470 max0addsup 11472 negfi 11481 minmax 11483 mincl 11484 min1inf 11485 min2inf 11486 minabs 11489 minclpr 11490 mingeb 11495 xrminrecl 11526 xrminrpcl 11527 |
| Copyright terms: Public domain | W3C validator |