Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcl | GIF version |
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7895 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | recn 7919 | . . . . 5 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | df-neg 8105 | . . . . . . 7 ⊢ -𝐴 = (0 − 𝐴) | |
4 | 3 | eqeq1i 2183 | . . . . . 6 ⊢ (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥) |
5 | recn 7919 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 0cn 7924 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
7 | subadd 8134 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) | |
8 | 6, 7 | mp3an1 1324 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
9 | 5, 8 | sylan 283 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
10 | 4, 9 | bitrid 192 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
11 | 2, 10 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0)) |
12 | eleq1a 2247 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) | |
13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ)) |
14 | 11, 13 | sylbird 170 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
15 | 14 | rexlimdva 2592 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ)) |
16 | 1, 15 | mpd 13 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∃wrex 2454 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 + caddc 7789 − cmin 8102 -cneg 8103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-neg 8105 |
This theorem is referenced by: renegcli 8193 resubcl 8195 negreb 8196 renegcld 8311 negf1o 8313 ltnegcon1 8394 ltnegcon2 8395 lenegcon1 8397 lenegcon2 8398 mullt0 8411 recexre 8509 elnnz 9236 btwnz 9345 supinfneg 9568 infsupneg 9569 supminfex 9570 ublbneg 9586 negm 9588 rpnegap 9657 negelrp 9658 xnegcl 9803 xnegneg 9804 xltnegi 9806 rexsub 9824 xnegid 9830 xnegdi 9839 xpncan 9842 xnpcan 9843 xposdif 9853 iooneg 9959 iccneg 9960 icoshftf1o 9962 crim 10835 absnid 11050 absdiflt 11069 absdifle 11070 dfabsmax 11194 max0addsup 11196 negfi 11204 minmax 11206 mincl 11207 min1inf 11208 min2inf 11209 minabs 11212 minclpr 11213 mingeb 11218 xrminrecl 11249 xrminrpcl 11250 infssuzex 11917 |
Copyright terms: Public domain | W3C validator |