ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl GIF version

Theorem renegcl 7946
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7654 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 recn 7677 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 df-neg 7859 . . . . . . 7 -𝐴 = (0 − 𝐴)
43eqeq1i 2122 . . . . . 6 (-𝐴 = 𝑥 ↔ (0 − 𝐴) = 𝑥)
5 recn 7677 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 0cn 7682 . . . . . . . 8 0 ∈ ℂ
7 subadd 7888 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
86, 7mp3an1 1285 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
95, 8sylan 279 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → ((0 − 𝐴) = 𝑥 ↔ (𝐴 + 𝑥) = 0))
104, 9syl5bb 191 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℂ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
112, 10sylan2 282 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 ↔ (𝐴 + 𝑥) = 0))
12 eleq1a 2186 . . . . 5 (𝑥 ∈ ℝ → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1312adantl 273 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝐴 = 𝑥 → -𝐴 ∈ ℝ))
1411, 13sylbird 169 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
1514rexlimdva 2523 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → -𝐴 ∈ ℝ))
161, 15mpd 13 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  wrex 2391  (class class class)co 5728  cc 7545  cr 7546  0cc0 7547   + caddc 7550  cmin 7856  -cneg 7857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-resscn 7637  ax-1cn 7638  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-sub 7858  df-neg 7859
This theorem is referenced by:  renegcli  7947  resubcl  7949  negreb  7950  renegcld  8061  negf1o  8063  ltnegcon1  8144  ltnegcon2  8145  lenegcon1  8147  lenegcon2  8148  mullt0  8161  recexre  8258  elnnz  8968  btwnz  9074  supinfneg  9292  infsupneg  9293  supminfex  9294  ublbneg  9307  negm  9309  rpnegap  9375  xnegcl  9508  xnegneg  9509  xltnegi  9511  rexsub  9529  xnegid  9535  xnegdi  9544  xpncan  9547  xnpcan  9548  xposdif  9558  iooneg  9664  iccneg  9665  icoshftf1o  9667  crim  10523  absnid  10737  absdiflt  10756  absdifle  10757  dfabsmax  10881  max0addsup  10883  negfi  10891  minmax  10893  mincl  10894  min1inf  10895  min2inf  10896  minabs  10899  minclpr  10900  xrminrecl  10934  xrminrpcl  10935  infssuzex  11490
  Copyright terms: Public domain W3C validator