ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd2 GIF version

Theorem ltadd2 8562
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltadd2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem ltadd2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 axltadd 8212 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
2 ax-rnegex 8104 . . . 4 (𝐶 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
323ad2ant3 1044 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
4 simpl3 1026 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℝ)
5 simpl1 1024 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℝ)
64, 5readdcld 8172 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝐴) ∈ ℝ)
7 simpl2 1025 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℝ)
84, 7readdcld 8172 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝐵) ∈ ℝ)
9 simprl 529 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℝ)
10 axltadd 8212 . . . . . 6 (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) < (𝑥 + (𝐶 + 𝐵))))
116, 8, 9, 10syl3anc 1271 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) < (𝑥 + (𝐶 + 𝐵))))
129recnd 8171 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
134recnd 8171 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
145recnd 8171 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
1512, 13, 14addassd 8165 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (𝑥 + (𝐶 + 𝐴)))
167recnd 8171 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
1712, 13, 16addassd 8165 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (𝑥 + (𝐶 + 𝐵)))
1815, 17breq12d 4095 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) < ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) < (𝑥 + (𝐶 + 𝐵))))
1911, 18sylibrd 169 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → ((𝑥 + 𝐶) + 𝐴) < ((𝑥 + 𝐶) + 𝐵)))
20 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0)
21 addcom 8279 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
2221eqeq1d 2238 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐶 + 𝑥) = 0 ↔ (𝑥 + 𝐶) = 0))
2313, 12, 22syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝑥) = 0 ↔ (𝑥 + 𝐶) = 0))
2420, 23mpbid 147 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (𝑥 + 𝐶) = 0)
2524oveq1d 6015 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (0 + 𝐴))
2614addlidd 8292 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (0 + 𝐴) = 𝐴)
2725, 26eqtrd 2262 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = 𝐴)
2824oveq1d 6015 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (0 + 𝐵))
2916addlidd 8292 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (0 + 𝐵) = 𝐵)
3028, 29eqtrd 2262 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = 𝐵)
3127, 30breq12d 4095 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) < ((𝑥 + 𝐶) + 𝐵) ↔ 𝐴 < 𝐵))
3219, 31sylibd 149 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → 𝐴 < 𝐵))
333, 32rexlimddv 2653 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → 𝐴 < 𝐵))
341, 33impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995   + caddc 7998   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  ltadd2i  8563  ltadd2d  8564  ltaddneg  8567  ltadd1  8572  ltaddpos  8595  ltsub2  8602  ltaddsublt  8714  avglt1  9346  flqbi2  10506
  Copyright terms: Public domain W3C validator