ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem1 GIF version

Theorem cnegexlem1 8267
Description: Addition cancellation of a real number from two complex numbers. Lemma for cnegex 8270. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem cnegexlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8054 . . . 4 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
213ad2ant1 1021 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
3 recn 8078 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 8078 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 oveq2 5965 . . . . . . . . . . 11 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)))
6 simpr 110 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7 simpll 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
8 simplrl 535 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
96, 7, 8addassd 8115 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵)))
10 simplrr 536 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
116, 7, 10addassd 8115 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶)))
129, 11eqeq12d 2221 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶))))
135, 12imbitrrid 156 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
1413adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
15 addcom 8229 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑥) = (𝑥 + 𝐴))
1615eqeq1d 2215 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
1716adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
18 oveq1 5964 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵))
19 oveq1 5964 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶))
2018, 19eqeq12d 2221 . . . . . . . . . . . . . 14 ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
2120adantl 277 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
22 addlid 8231 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
23 addlid 8231 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶)
2422, 23eqeqan12d 2222 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2524adantl 277 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2625ad2antrr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2721, 26bitrd 188 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
2827ex 115 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
2917, 28sylbid 150 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
3029imp 124 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
3114, 30sylibd 149 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
3231ex 115 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
334, 32sylan2 286 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
3433rexlimdva 2624 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
35343impb 1202 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
363, 35syl3an1 1283 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
372, 36mpd 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
38 oveq2 5965 . 2 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
3937, 38impbid1 142 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wrex 2486  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945   + caddc 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  cnegexlem3  8269
  Copyright terms: Public domain W3C validator