ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem2 GIF version

Theorem cnegexlem2 8219
Description: Existence of a real number which produces a real number when multiplied by i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 8221. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem2 𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ

Proof of Theorem cnegexlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 8035 . 2 0 ∈ ℂ
2 cnre 8039 . 2 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
3 ax-rnegex 8005 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0)
43adantr 276 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0)
5 recn 8029 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
6 ax-icn 7991 . . . . . . . . . . . 12 i ∈ ℂ
7 recn 8029 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 mulcl 8023 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
96, 7, 8sylancr 414 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
10 recn 8029 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
11 addlid 8182 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ → (0 + 𝑧) = 𝑧)
12113ad2ant3 1022 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → (0 + 𝑧) = 𝑧)
1312adantr 276 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → (0 + 𝑧) = 𝑧)
14 oveq1 5932 . . . . . . . . . . . . . . 15 ((𝑥 + 𝑧) = 0 → ((𝑥 + 𝑧) + (i · 𝑦)) = (0 + (i · 𝑦)))
1514ad2antrl 490 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → ((𝑥 + 𝑧) + (i · 𝑦)) = (0 + (i · 𝑦)))
16 add32 8202 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + 𝑧) + (i · 𝑦)) = ((𝑥 + (i · 𝑦)) + 𝑧))
17163com23 1211 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑧) + (i · 𝑦)) = ((𝑥 + (i · 𝑦)) + 𝑧))
18 oveq1 5932 . . . . . . . . . . . . . . . . 17 (0 = (𝑥 + (i · 𝑦)) → (0 + 𝑧) = ((𝑥 + (i · 𝑦)) + 𝑧))
1918eqcomd 2202 . . . . . . . . . . . . . . . 16 (0 = (𝑥 + (i · 𝑦)) → ((𝑥 + (i · 𝑦)) + 𝑧) = (0 + 𝑧))
2017, 19sylan9eq 2249 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ 0 = (𝑥 + (i · 𝑦))) → ((𝑥 + 𝑧) + (i · 𝑦)) = (0 + 𝑧))
2120adantrl 478 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → ((𝑥 + 𝑧) + (i · 𝑦)) = (0 + 𝑧))
22 addlid 8182 . . . . . . . . . . . . . . . 16 ((i · 𝑦) ∈ ℂ → (0 + (i · 𝑦)) = (i · 𝑦))
23223ad2ant2 1021 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → (0 + (i · 𝑦)) = (i · 𝑦))
2423adantr 276 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → (0 + (i · 𝑦)) = (i · 𝑦))
2515, 21, 243eqtr3d 2237 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → (0 + 𝑧) = (i · 𝑦))
2613, 25eqtr3d 2231 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → 𝑧 = (i · 𝑦))
2726ex 115 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦))) → 𝑧 = (i · 𝑦)))
285, 9, 10, 27syl3an 1291 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦))) → 𝑧 = (i · 𝑦)))
29283expa 1205 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦))) → 𝑧 = (i · 𝑦)))
3029imp 124 . . . . . . . 8 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → 𝑧 = (i · 𝑦))
31 simplr 528 . . . . . . . 8 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → 𝑧 ∈ ℝ)
3230, 31eqeltrrd 2274 . . . . . . 7 ((((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ((𝑥 + 𝑧) = 0 ∧ 0 = (𝑥 + (i · 𝑦)))) → (i · 𝑦) ∈ ℝ)
3332exp32 365 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑥 + 𝑧) = 0 → (0 = (𝑥 + (i · 𝑦)) → (i · 𝑦) ∈ ℝ)))
3433rexlimdva 2614 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧 ∈ ℝ (𝑥 + 𝑧) = 0 → (0 = (𝑥 + (i · 𝑦)) → (i · 𝑦) ∈ ℝ)))
354, 34mpd 13 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (i · 𝑦) ∈ ℝ))
3635reximdva 2599 . . 3 (𝑥 ∈ ℝ → (∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → ∃𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ))
3736rexlimiv 2608 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → ∃𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ)
381, 2, 37mp2b 8 1 𝑦 ∈ ℝ (i · 𝑦) ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wrex 2476  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  ici 7898   + caddc 7899   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  cnegex  8221
  Copyright terms: Public domain W3C validator