Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7906 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7870 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 7887 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 422 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2233 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 154 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2581 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∃wrex 2449 (class class class)co 5850 ℝcr 7760 0cc0 7761 1c1 7762 + caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-ral 2453 df-rex 2454 |
This theorem is referenced by: 0red 7908 0xr 7953 axmulgt0 7978 gtso 7985 0lt1 8033 ine0 8300 ltaddneg 8330 addgt0 8354 addgegt0 8355 addgtge0 8356 addge0 8357 ltaddpos 8358 ltneg 8368 leneg 8371 lt0neg1 8374 lt0neg2 8375 le0neg1 8376 le0neg2 8377 addge01 8378 suble0 8382 0le1 8387 gt0ne0i 8392 gt0ne0d 8418 lt0ne0d 8419 recexre 8484 recexgt0 8486 inelr 8490 rimul 8491 1ap0 8496 reapmul1 8501 apsqgt0 8507 msqge0 8522 mulge0 8525 recexaplem2 8557 recexap 8558 rerecclap 8634 ltm1 8749 recgt0 8753 ltmul12a 8763 lemul12a 8765 mulgt1 8766 gt0div 8773 ge0div 8774 recgt1i 8801 recreclt 8803 sup3exmid 8860 crap0 8861 nnge1 8888 nngt0 8890 nnrecgt0 8903 0ne1 8932 0le0 8954 neg1lt0 8973 halfge0 9081 iap0 9088 nn0ssre 9126 nn0ge0 9147 nn0nlt0 9148 nn0le0eq0 9150 0mnnnnn0 9154 elnnnn0b 9166 elnnnn0c 9167 elnnz 9209 0z 9210 elnnz1 9222 nn0lt10b 9279 recnz 9292 gtndiv 9294 fnn0ind 9315 rpge0 9610 rpnegap 9630 0nrp 9633 0ltpnf 9726 mnflt0 9728 xneg0 9775 xaddid1 9806 xnn0xadd0 9811 xposdif 9826 elrege0 9920 0e0icopnf 9923 0elunit 9930 1elunit 9931 divelunit 9946 lincmb01cmp 9947 iccf1o 9948 unitssre 9949 fz0to4untppr 10067 modqelico 10277 modqmuladdim 10310 addmodid 10315 expubnd 10520 le2sq2 10538 bernneq2 10584 expnbnd 10586 expnlbnd 10587 faclbnd 10662 faclbnd3 10664 faclbnd6 10665 bcval4 10673 bcpasc 10687 reim0 10812 re0 10846 im0 10847 rei 10850 imi 10851 cj0 10852 caucvgre 10932 rennim 10953 sqrt0rlem 10954 sqrt0 10955 resqrexlemdecn 10963 resqrexlemnm 10969 resqrexlemgt0 10971 sqrt00 10991 sqrt9 10999 sqrt2gt1lt2 11000 leabs 11025 ltabs 11038 sqrtpclii 11081 max0addsup 11170 fimaxre2 11177 climge0 11275 iserge0 11293 fsum00 11412 arisum2 11449 0.999... 11471 fprodge0 11587 cos0 11680 ef01bndlem 11706 sin01bnd 11707 cos01bnd 11708 cos2bnd 11710 sin01gt0 11711 cos01gt0 11712 sincos2sgn 11715 sin4lt0 11716 absef 11719 absefib 11720 efieq1re 11721 epos 11730 flodddiv4 11880 gcdn0gt0 11920 nn0seqcvgd 11982 algcvgblem 11990 algcvga 11992 pythagtriplem12 12216 pythagtriplem13 12217 pythagtriplem14 12218 pythagtriplem16 12220 ssblps 13178 ssbl 13179 xmeter 13189 cnbl0 13287 reeff1olem 13445 pilem3 13457 pipos 13462 sinhalfpilem 13465 sincosq1sgn 13500 sincosq2sgn 13501 sinq34lt0t 13505 coseq0q4123 13508 coseq00topi 13509 coseq0negpitopi 13510 tangtx 13512 sincos4thpi 13514 sincos6thpi 13516 cosordlem 13523 cosq34lt1 13524 cos02pilt1 13525 cos0pilt1 13526 cos11 13527 ioocosf1o 13528 log1 13540 logrpap0b 13550 logdivlti 13555 rpabscxpbnd 13612 lgsval2lem 13664 lgsval4a 13676 lgsneg 13678 lgsdilem 13681 lgsdir2lem1 13682 ex-gcd 13725 trilpolemclim 14028 trilpolemcl 14029 trilpolemisumle 14030 trilpolemeq1 14032 trilpolemlt1 14033 trirec0 14036 apdiff 14040 redc0 14049 reap0 14050 dceqnconst 14051 dcapnconst 14052 nconstwlpolemgt0 14055 |
Copyright terms: Public domain | W3C validator |