![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8018 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7981 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 7998 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2256 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2605 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∃wrex 2473 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2186 df-clel 2189 df-ral 2477 df-rex 2478 |
This theorem is referenced by: 0red 8020 0xr 8066 axmulgt0 8091 gtso 8098 0lt1 8146 ine0 8413 ltaddneg 8443 addgt0 8467 addgegt0 8468 addgtge0 8469 addge0 8470 ltaddpos 8471 ltneg 8481 leneg 8484 lt0neg1 8487 lt0neg2 8488 le0neg1 8489 le0neg2 8490 addge01 8491 suble0 8495 0le1 8500 gt0ne0i 8505 gt0ne0d 8531 lt0ne0d 8532 recexre 8597 recexgt0 8599 inelr 8603 rimul 8604 1ap0 8609 reapmul1 8614 apsqgt0 8620 msqge0 8635 mulge0 8638 recexaplem2 8671 recexap 8672 rerecclap 8749 ltm1 8865 recgt0 8869 ltmul12a 8879 lemul12a 8881 mulgt1 8882 gt0div 8889 ge0div 8890 recgt1i 8917 recreclt 8919 sup3exmid 8976 crap0 8977 nnge1 9005 nngt0 9007 nnrecgt0 9020 0ne1 9049 0le0 9071 neg1lt0 9090 halfge0 9198 iap0 9205 nn0ssre 9244 nn0ge0 9265 nn0nlt0 9266 nn0le0eq0 9268 0mnnnnn0 9272 elnnnn0b 9284 elnnnn0c 9285 elnnz 9327 0z 9328 elnnz1 9340 nn0lt10b 9397 recnz 9410 gtndiv 9412 fnn0ind 9433 rpge0 9732 rpnegap 9752 0nrp 9755 0ltpnf 9848 mnflt0 9850 xneg0 9897 xaddid1 9928 xnn0xadd0 9933 xposdif 9948 elrege0 10042 0e0icopnf 10045 0elunit 10052 1elunit 10053 divelunit 10068 lincmb01cmp 10069 iccf1o 10070 unitssre 10071 fz0to4untppr 10190 modqelico 10405 modqmuladdim 10438 addmodid 10443 xnn0nnen 10508 expubnd 10667 le2sq2 10686 bernneq2 10732 expnbnd 10734 expnlbnd 10735 faclbnd 10812 faclbnd3 10814 faclbnd6 10815 bcval4 10823 bcpasc 10837 reim0 11005 re0 11039 im0 11040 rei 11043 imi 11044 cj0 11045 caucvgre 11125 rennim 11146 sqrt0rlem 11147 sqrt0 11148 resqrexlemdecn 11156 resqrexlemnm 11162 resqrexlemgt0 11164 sqrt00 11184 sqrt9 11192 sqrt2gt1lt2 11193 leabs 11218 ltabs 11231 sqrtpclii 11274 max0addsup 11363 fimaxre2 11370 climge0 11468 iserge0 11486 fsum00 11605 arisum2 11642 0.999... 11664 fprodge0 11780 cos0 11873 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos2bnd 11903 sin01gt0 11905 cos01gt0 11906 sincos2sgn 11909 sin4lt0 11910 absef 11913 absefib 11914 efieq1re 11915 epos 11924 flodddiv4 12075 gcdn0gt0 12115 nn0seqcvgd 12179 algcvgblem 12187 algcvga 12189 pythagtriplem12 12413 pythagtriplem13 12414 pythagtriplem14 12415 pythagtriplem16 12417 mulgnegnn 13202 ssblps 14593 ssbl 14594 xmeter 14604 cnbl0 14702 hovera 14801 hovergt0 14804 reeff1olem 14906 pilem3 14918 pipos 14923 sinhalfpilem 14926 sincosq1sgn 14961 sincosq2sgn 14962 sinq34lt0t 14966 coseq0q4123 14969 coseq00topi 14970 coseq0negpitopi 14971 tangtx 14973 sincos4thpi 14975 sincos6thpi 14977 cosordlem 14984 cosq34lt1 14985 cos02pilt1 14986 cos0pilt1 14987 cos11 14988 ioocosf1o 14989 log1 15001 logrpap0b 15011 logdivlti 15016 rpabscxpbnd 15073 lgsval2lem 15126 lgsval4a 15138 lgsneg 15140 lgsdilem 15143 lgsdir2lem1 15144 ex-gcd 15223 trilpolemclim 15526 trilpolemcl 15527 trilpolemisumle 15528 trilpolemeq1 15530 trilpolemlt1 15531 trirec0 15534 apdiff 15538 redc0 15547 reap0 15548 dceqnconst 15550 dcapnconst 15551 nconstwlpolemgt0 15554 neap0mkv 15559 |
Copyright terms: Public domain | W3C validator |