![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7983 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 8000 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2256 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2605 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∃wrex 2473 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2186 df-clel 2189 df-ral 2477 df-rex 2478 |
This theorem is referenced by: 0red 8022 0xr 8068 axmulgt0 8093 gtso 8100 0lt1 8148 ine0 8415 ltaddneg 8445 addgt0 8469 addgegt0 8470 addgtge0 8471 addge0 8472 ltaddpos 8473 ltneg 8483 leneg 8486 lt0neg1 8489 lt0neg2 8490 le0neg1 8491 le0neg2 8492 addge01 8493 suble0 8497 0le1 8502 gt0ne0i 8507 gt0ne0d 8533 lt0ne0d 8534 recexre 8599 recexgt0 8601 inelr 8605 rimul 8606 1ap0 8611 reapmul1 8616 apsqgt0 8622 msqge0 8637 mulge0 8640 recexaplem2 8673 recexap 8674 rerecclap 8751 ltm1 8867 recgt0 8871 ltmul12a 8881 lemul12a 8883 mulgt1 8884 gt0div 8891 ge0div 8892 recgt1i 8919 recreclt 8921 sup3exmid 8978 crap0 8979 nnge1 9007 nngt0 9009 nnrecgt0 9022 0ne1 9051 0le0 9073 neg1lt0 9092 halfge0 9201 iap0 9208 nn0ssre 9247 nn0ge0 9268 nn0nlt0 9269 nn0le0eq0 9271 0mnnnnn0 9275 elnnnn0b 9287 elnnnn0c 9288 elnnz 9330 0z 9331 elnnz1 9343 nn0lt10b 9400 recnz 9413 gtndiv 9415 fnn0ind 9436 rpge0 9735 rpnegap 9755 0nrp 9758 0ltpnf 9851 mnflt0 9853 xneg0 9900 xaddid1 9931 xnn0xadd0 9936 xposdif 9951 elrege0 10045 0e0icopnf 10048 0elunit 10055 1elunit 10056 divelunit 10071 lincmb01cmp 10072 iccf1o 10073 unitssre 10074 fz0to4untppr 10193 modqelico 10408 modqmuladdim 10441 addmodid 10446 xnn0nnen 10511 expubnd 10670 le2sq2 10689 bernneq2 10735 expnbnd 10737 expnlbnd 10738 faclbnd 10815 faclbnd3 10817 faclbnd6 10818 bcval4 10826 bcpasc 10840 reim0 11008 re0 11042 im0 11043 rei 11046 imi 11047 cj0 11048 caucvgre 11128 rennim 11149 sqrt0rlem 11150 sqrt0 11151 resqrexlemdecn 11159 resqrexlemnm 11165 resqrexlemgt0 11167 sqrt00 11187 sqrt9 11195 sqrt2gt1lt2 11196 leabs 11221 ltabs 11234 sqrtpclii 11277 max0addsup 11366 fimaxre2 11373 climge0 11471 iserge0 11489 fsum00 11608 arisum2 11645 0.999... 11667 fprodge0 11783 cos0 11876 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 cos2bnd 11906 sin01gt0 11908 cos01gt0 11909 sincos2sgn 11912 sin4lt0 11913 absef 11916 absefib 11917 efieq1re 11918 epos 11927 flodddiv4 12078 gcdn0gt0 12118 nn0seqcvgd 12182 algcvgblem 12190 algcvga 12192 pythagtriplem12 12416 pythagtriplem13 12417 pythagtriplem14 12418 pythagtriplem16 12420 mulgnegnn 13205 ssblps 14604 ssbl 14605 xmeter 14615 cnbl0 14713 hovera 14826 hovergt0 14829 plyrecj 14941 reeff1olem 14947 pilem3 14959 pipos 14964 sinhalfpilem 14967 sincosq1sgn 15002 sincosq2sgn 15003 sinq34lt0t 15007 coseq0q4123 15010 coseq00topi 15011 coseq0negpitopi 15012 tangtx 15014 sincos4thpi 15016 sincos6thpi 15018 cosordlem 15025 cosq34lt1 15026 cos02pilt1 15027 cos0pilt1 15028 cos11 15029 ioocosf1o 15030 log1 15042 logrpap0b 15052 logdivlti 15057 rpabscxpbnd 15114 lgsval2lem 15167 lgsval4a 15179 lgsneg 15181 lgsdilem 15184 lgsdir2lem1 15185 ex-gcd 15293 trilpolemclim 15596 trilpolemcl 15597 trilpolemisumle 15598 trilpolemeq1 15600 trilpolemlt1 15601 trirec0 15604 apdiff 15608 redc0 15617 reap0 15618 dceqnconst 15620 dcapnconst 15621 nconstwlpolemgt0 15624 neap0mkv 15629 |
Copyright terms: Public domain | W3C validator |