| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8025 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 7988 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8005 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2259 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2608 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 (class class class)co 5922 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: 0red 8027 0xr 8073 axmulgt0 8098 gtso 8105 0lt1 8153 ine0 8420 ltaddneg 8451 addgt0 8475 addgegt0 8476 addgtge0 8477 addge0 8478 ltaddpos 8479 ltneg 8489 leneg 8492 lt0neg1 8495 lt0neg2 8496 le0neg1 8497 le0neg2 8498 addge01 8499 suble0 8503 0le1 8508 gt0ne0i 8513 gt0ne0d 8539 lt0ne0d 8540 recexre 8605 recexgt0 8607 inelr 8611 rimul 8612 1ap0 8617 reapmul1 8622 apsqgt0 8628 msqge0 8643 mulge0 8646 recexaplem2 8679 recexap 8680 rerecclap 8757 ltm1 8873 recgt0 8877 ltmul12a 8887 lemul12a 8889 mulgt1 8890 gt0div 8897 ge0div 8898 recgt1i 8925 recreclt 8927 sup3exmid 8984 crap0 8985 nnge1 9013 nngt0 9015 nnrecgt0 9028 0ne1 9057 0le0 9079 neg1lt0 9098 halfge0 9207 iap0 9214 nn0ssre 9253 nn0ge0 9274 nn0nlt0 9275 nn0le0eq0 9277 0mnnnnn0 9281 elnnnn0b 9293 elnnnn0c 9294 elnnz 9336 0z 9337 elnnz1 9349 nn0lt10b 9406 recnz 9419 gtndiv 9421 fnn0ind 9442 rpge0 9741 rpnegap 9761 0nrp 9764 0ltpnf 9857 mnflt0 9859 xneg0 9906 xaddid1 9937 xnn0xadd0 9942 xposdif 9957 elrege0 10051 0e0icopnf 10054 0elunit 10061 1elunit 10062 divelunit 10077 lincmb01cmp 10078 iccf1o 10079 unitssre 10080 fz0to4untppr 10199 modqelico 10426 modqmuladdim 10459 addmodid 10464 xnn0nnen 10529 expubnd 10688 le2sq2 10707 bernneq2 10753 expnbnd 10755 expnlbnd 10756 faclbnd 10833 faclbnd3 10835 faclbnd6 10836 bcval4 10844 bcpasc 10858 reim0 11026 re0 11060 im0 11061 rei 11064 imi 11065 cj0 11066 caucvgre 11146 rennim 11167 sqrt0rlem 11168 sqrt0 11169 resqrexlemdecn 11177 resqrexlemnm 11183 resqrexlemgt0 11185 sqrt00 11205 sqrt9 11213 sqrt2gt1lt2 11214 leabs 11239 ltabs 11252 sqrtpclii 11295 max0addsup 11384 fimaxre2 11392 climge0 11490 iserge0 11508 fsum00 11627 arisum2 11664 0.999... 11686 fprodge0 11802 cos0 11895 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos2bnd 11925 sin01gt0 11927 cos01gt0 11928 sincos2sgn 11931 sin4lt0 11932 absef 11935 absefib 11936 efieq1re 11937 epos 11946 flodddiv4 12101 gcdn0gt0 12145 nn0seqcvgd 12209 algcvgblem 12217 algcvga 12219 pythagtriplem12 12444 pythagtriplem13 12445 pythagtriplem14 12446 pythagtriplem16 12448 mulgnegnn 13262 ssblps 14661 ssbl 14662 xmeter 14672 cnbl0 14770 hovera 14883 hovergt0 14886 plyrecj 14999 reeff1olem 15007 pilem3 15019 pipos 15024 sinhalfpilem 15027 sincosq1sgn 15062 sincosq2sgn 15063 sinq34lt0t 15067 coseq0q4123 15070 coseq00topi 15071 coseq0negpitopi 15072 tangtx 15074 sincos4thpi 15076 sincos6thpi 15078 cosordlem 15085 cosq34lt1 15086 cos02pilt1 15087 cos0pilt1 15088 cos11 15089 ioocosf1o 15090 log1 15102 logrpap0b 15112 logdivlti 15117 rpabscxpbnd 15176 lgsval2lem 15251 lgsval4a 15263 lgsneg 15265 lgsdilem 15268 lgsdir2lem1 15269 ex-gcd 15377 trilpolemclim 15680 trilpolemcl 15681 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 trirec0 15688 apdiff 15692 redc0 15701 reap0 15702 dceqnconst 15704 dcapnconst 15705 nconstwlpolemgt0 15708 neap0mkv 15713 |
| Copyright terms: Public domain | W3C validator |