| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8005 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8022 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2259 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2608 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 (class class class)co 5925 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: 0red 8044 0xr 8090 axmulgt0 8115 gtso 8122 0lt1 8170 ine0 8437 ltaddneg 8468 addgt0 8492 addgegt0 8493 addgtge0 8494 addge0 8495 ltaddpos 8496 ltneg 8506 leneg 8509 lt0neg1 8512 lt0neg2 8513 le0neg1 8514 le0neg2 8515 addge01 8516 suble0 8520 0le1 8525 gt0ne0i 8530 gt0ne0d 8556 lt0ne0d 8557 recexre 8622 recexgt0 8624 inelr 8628 rimul 8629 1ap0 8634 reapmul1 8639 apsqgt0 8645 msqge0 8660 mulge0 8663 recexaplem2 8696 recexap 8697 rerecclap 8774 ltm1 8890 recgt0 8894 ltmul12a 8904 lemul12a 8906 mulgt1 8907 gt0div 8914 ge0div 8915 recgt1i 8942 recreclt 8944 sup3exmid 9001 crap0 9002 nnge1 9030 nngt0 9032 nnrecgt0 9045 0ne1 9074 0le0 9096 neg1lt0 9115 halfge0 9224 iap0 9231 nn0ssre 9270 nn0ge0 9291 nn0nlt0 9292 nn0le0eq0 9294 0mnnnnn0 9298 elnnnn0b 9310 elnnnn0c 9311 elnnz 9353 0z 9354 elnnz1 9366 nn0lt10b 9423 recnz 9436 gtndiv 9438 fnn0ind 9459 rpge0 9758 rpnegap 9778 0nrp 9781 0ltpnf 9874 mnflt0 9876 xneg0 9923 xaddid1 9954 xnn0xadd0 9959 xposdif 9974 elrege0 10068 0e0icopnf 10071 0elunit 10078 1elunit 10079 divelunit 10094 lincmb01cmp 10095 iccf1o 10096 unitssre 10097 fz0to4untppr 10216 modqelico 10443 modqmuladdim 10476 addmodid 10481 xnn0nnen 10546 expubnd 10705 le2sq2 10724 bernneq2 10770 expnbnd 10772 expnlbnd 10773 faclbnd 10850 faclbnd3 10852 faclbnd6 10853 bcval4 10861 bcpasc 10875 reim0 11043 re0 11077 im0 11078 rei 11081 imi 11082 cj0 11083 caucvgre 11163 rennim 11184 sqrt0rlem 11185 sqrt0 11186 resqrexlemdecn 11194 resqrexlemnm 11200 resqrexlemgt0 11202 sqrt00 11222 sqrt9 11230 sqrt2gt1lt2 11231 leabs 11256 ltabs 11269 sqrtpclii 11312 max0addsup 11401 fimaxre2 11409 climge0 11507 iserge0 11525 fsum00 11644 arisum2 11681 0.999... 11703 fprodge0 11819 cos0 11912 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos2bnd 11942 sin01gt0 11944 cos01gt0 11945 sincos2sgn 11948 sin4lt0 11949 absef 11952 absefib 11953 efieq1re 11954 epos 11963 flodddiv4 12118 gcdn0gt0 12170 nn0seqcvgd 12234 algcvgblem 12242 algcvga 12244 pythagtriplem12 12469 pythagtriplem13 12470 pythagtriplem14 12471 pythagtriplem16 12473 mulgnegnn 13338 ssblps 14745 ssbl 14746 xmeter 14756 cnbl0 14854 hovera 14967 hovergt0 14970 plyrecj 15083 reeff1olem 15091 pilem3 15103 pipos 15108 sinhalfpilem 15111 sincosq1sgn 15146 sincosq2sgn 15147 sinq34lt0t 15151 coseq0q4123 15154 coseq00topi 15155 coseq0negpitopi 15156 tangtx 15158 sincos4thpi 15160 sincos6thpi 15162 cosordlem 15169 cosq34lt1 15170 cos02pilt1 15171 cos0pilt1 15172 cos11 15173 ioocosf1o 15174 log1 15186 logrpap0b 15196 logdivlti 15201 rpabscxpbnd 15260 lgsval2lem 15335 lgsval4a 15347 lgsneg 15349 lgsdilem 15352 lgsdir2lem1 15353 ex-gcd 15461 trilpolemclim 15767 trilpolemcl 15768 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 trirec0 15775 apdiff 15779 redc0 15788 reap0 15789 dceqnconst 15791 dcapnconst 15792 nconstwlpolemgt0 15795 neap0mkv 15800 |
| Copyright terms: Public domain | W3C validator |