| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8033 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8050 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2267 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2616 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ∃wrex 2484 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-cleq 2197 df-clel 2200 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: 0red 8072 0xr 8118 axmulgt0 8143 gtso 8150 0lt1 8198 ine0 8465 ltaddneg 8496 addgt0 8520 addgegt0 8521 addgtge0 8522 addge0 8523 ltaddpos 8524 ltneg 8534 leneg 8537 lt0neg1 8540 lt0neg2 8541 le0neg1 8542 le0neg2 8543 addge01 8544 suble0 8548 0le1 8553 gt0ne0i 8558 gt0ne0d 8584 lt0ne0d 8585 recexre 8650 recexgt0 8652 inelr 8656 rimul 8657 1ap0 8662 reapmul1 8667 apsqgt0 8673 msqge0 8688 mulge0 8691 recexaplem2 8724 recexap 8725 rerecclap 8802 ltm1 8918 recgt0 8922 ltmul12a 8932 lemul12a 8934 mulgt1 8935 gt0div 8942 ge0div 8943 recgt1i 8970 recreclt 8972 sup3exmid 9029 crap0 9030 nnge1 9058 nngt0 9060 nnrecgt0 9073 0ne1 9102 0le0 9124 neg1lt0 9143 halfge0 9252 iap0 9259 nn0ssre 9298 nn0ge0 9319 nn0nlt0 9320 nn0le0eq0 9322 0mnnnnn0 9326 elnnnn0b 9338 elnnnn0c 9339 elnnz 9381 0z 9382 elnnz1 9394 nn0lt10b 9452 recnz 9465 gtndiv 9467 fnn0ind 9488 rpge0 9787 rpnegap 9807 0nrp 9810 0ltpnf 9903 mnflt0 9905 xneg0 9952 xaddid1 9983 xnn0xadd0 9988 xposdif 10003 elrege0 10097 0e0icopnf 10100 0elunit 10107 1elunit 10108 divelunit 10123 lincmb01cmp 10124 iccf1o 10125 unitssre 10126 fz0to4untppr 10245 modqelico 10477 modqmuladdim 10510 addmodid 10515 xnn0nnen 10580 expubnd 10739 le2sq2 10758 bernneq2 10804 expnbnd 10806 expnlbnd 10807 faclbnd 10884 faclbnd3 10886 faclbnd6 10887 bcval4 10895 bcpasc 10909 lsw0 11039 reim0 11143 re0 11177 im0 11178 rei 11181 imi 11182 cj0 11183 caucvgre 11263 rennim 11284 sqrt0rlem 11285 sqrt0 11286 resqrexlemdecn 11294 resqrexlemnm 11300 resqrexlemgt0 11302 sqrt00 11322 sqrt9 11330 sqrt2gt1lt2 11331 leabs 11356 ltabs 11369 sqrtpclii 11412 max0addsup 11501 fimaxre2 11509 climge0 11607 iserge0 11625 fsum00 11744 arisum2 11781 0.999... 11803 fprodge0 11919 cos0 12012 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 cos2bnd 12042 sin01gt0 12044 cos01gt0 12045 sincos2sgn 12048 sin4lt0 12049 absef 12052 absefib 12053 efieq1re 12054 epos 12063 flodddiv4 12218 gcdn0gt0 12270 nn0seqcvgd 12334 algcvgblem 12342 algcvga 12344 pythagtriplem12 12569 pythagtriplem13 12570 pythagtriplem14 12571 pythagtriplem16 12573 mulgnegnn 13439 ssblps 14868 ssbl 14869 xmeter 14879 cnbl0 14977 hovera 15090 hovergt0 15093 plyrecj 15206 reeff1olem 15214 pilem3 15226 pipos 15231 sinhalfpilem 15234 sincosq1sgn 15269 sincosq2sgn 15270 sinq34lt0t 15274 coseq0q4123 15277 coseq00topi 15278 coseq0negpitopi 15279 tangtx 15281 sincos4thpi 15283 sincos6thpi 15285 cosordlem 15292 cosq34lt1 15293 cos02pilt1 15294 cos0pilt1 15295 cos11 15296 ioocosf1o 15297 log1 15309 logrpap0b 15319 logdivlti 15324 rpabscxpbnd 15383 lgsval2lem 15458 lgsval4a 15470 lgsneg 15472 lgsdilem 15475 lgsdir2lem1 15476 ex-gcd 15629 trilpolemclim 15937 trilpolemcl 15938 trilpolemisumle 15939 trilpolemeq1 15941 trilpolemlt1 15942 trirec0 15945 apdiff 15949 redc0 15958 reap0 15959 dceqnconst 15961 dcapnconst 15962 nconstwlpolemgt0 15965 neap0mkv 15970 |
| Copyright terms: Public domain | W3C validator |