| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8033 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8050 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2267 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2616 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ∃wrex 2484 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-cleq 2197 df-clel 2200 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: 0red 8072 0xr 8118 axmulgt0 8143 gtso 8150 0lt1 8198 ine0 8465 ltaddneg 8496 addgt0 8520 addgegt0 8521 addgtge0 8522 addge0 8523 ltaddpos 8524 ltneg 8534 leneg 8537 lt0neg1 8540 lt0neg2 8541 le0neg1 8542 le0neg2 8543 addge01 8544 suble0 8548 0le1 8553 gt0ne0i 8558 gt0ne0d 8584 lt0ne0d 8585 recexre 8650 recexgt0 8652 inelr 8656 rimul 8657 1ap0 8662 reapmul1 8667 apsqgt0 8673 msqge0 8688 mulge0 8691 recexaplem2 8724 recexap 8725 rerecclap 8802 ltm1 8918 recgt0 8922 ltmul12a 8932 lemul12a 8934 mulgt1 8935 gt0div 8942 ge0div 8943 recgt1i 8970 recreclt 8972 sup3exmid 9029 crap0 9030 nnge1 9058 nngt0 9060 nnrecgt0 9073 0ne1 9102 0le0 9124 neg1lt0 9143 halfge0 9252 iap0 9259 nn0ssre 9298 nn0ge0 9319 nn0nlt0 9320 nn0le0eq0 9322 0mnnnnn0 9326 elnnnn0b 9338 elnnnn0c 9339 elnnz 9381 0z 9382 elnnz1 9394 nn0lt10b 9452 recnz 9465 gtndiv 9467 fnn0ind 9488 rpge0 9787 rpnegap 9807 0nrp 9810 0ltpnf 9903 mnflt0 9905 xneg0 9952 xaddid1 9983 xnn0xadd0 9988 xposdif 10003 elrege0 10097 0e0icopnf 10100 0elunit 10107 1elunit 10108 divelunit 10123 lincmb01cmp 10124 iccf1o 10125 unitssre 10126 fz0to4untppr 10245 modqelico 10477 modqmuladdim 10510 addmodid 10515 xnn0nnen 10580 expubnd 10739 le2sq2 10758 bernneq2 10804 expnbnd 10806 expnlbnd 10807 faclbnd 10884 faclbnd3 10886 faclbnd6 10887 bcval4 10895 bcpasc 10909 lsw0 11039 reim0 11114 re0 11148 im0 11149 rei 11152 imi 11153 cj0 11154 caucvgre 11234 rennim 11255 sqrt0rlem 11256 sqrt0 11257 resqrexlemdecn 11265 resqrexlemnm 11271 resqrexlemgt0 11273 sqrt00 11293 sqrt9 11301 sqrt2gt1lt2 11302 leabs 11327 ltabs 11340 sqrtpclii 11383 max0addsup 11472 fimaxre2 11480 climge0 11578 iserge0 11596 fsum00 11715 arisum2 11752 0.999... 11774 fprodge0 11890 cos0 11983 ef01bndlem 12009 sin01bnd 12010 cos01bnd 12011 cos2bnd 12013 sin01gt0 12015 cos01gt0 12016 sincos2sgn 12019 sin4lt0 12020 absef 12023 absefib 12024 efieq1re 12025 epos 12034 flodddiv4 12189 gcdn0gt0 12241 nn0seqcvgd 12305 algcvgblem 12313 algcvga 12315 pythagtriplem12 12540 pythagtriplem13 12541 pythagtriplem14 12542 pythagtriplem16 12544 mulgnegnn 13410 ssblps 14839 ssbl 14840 xmeter 14850 cnbl0 14948 hovera 15061 hovergt0 15064 plyrecj 15177 reeff1olem 15185 pilem3 15197 pipos 15202 sinhalfpilem 15205 sincosq1sgn 15240 sincosq2sgn 15241 sinq34lt0t 15245 coseq0q4123 15248 coseq00topi 15249 coseq0negpitopi 15250 tangtx 15252 sincos4thpi 15254 sincos6thpi 15256 cosordlem 15263 cosq34lt1 15264 cos02pilt1 15265 cos0pilt1 15266 cos11 15267 ioocosf1o 15268 log1 15280 logrpap0b 15290 logdivlti 15295 rpabscxpbnd 15354 lgsval2lem 15429 lgsval4a 15441 lgsneg 15443 lgsdilem 15446 lgsdir2lem1 15447 ex-gcd 15600 trilpolemclim 15908 trilpolemcl 15909 trilpolemisumle 15910 trilpolemeq1 15912 trilpolemlt1 15913 trirec0 15916 apdiff 15920 redc0 15929 reap0 15930 dceqnconst 15932 dcapnconst 15933 nconstwlpolemgt0 15936 neap0mkv 15941 |
| Copyright terms: Public domain | W3C validator |