![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7958 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7922 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 7939 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2240 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2588 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∃wrex 2456 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 + caddc 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1re 7907 ax-addrcl 7910 ax-rnegex 7922 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-cleq 2170 df-clel 2173 df-ral 2460 df-rex 2461 |
This theorem is referenced by: 0red 7960 0xr 8006 axmulgt0 8031 gtso 8038 0lt1 8086 ine0 8353 ltaddneg 8383 addgt0 8407 addgegt0 8408 addgtge0 8409 addge0 8410 ltaddpos 8411 ltneg 8421 leneg 8424 lt0neg1 8427 lt0neg2 8428 le0neg1 8429 le0neg2 8430 addge01 8431 suble0 8435 0le1 8440 gt0ne0i 8445 gt0ne0d 8471 lt0ne0d 8472 recexre 8537 recexgt0 8539 inelr 8543 rimul 8544 1ap0 8549 reapmul1 8554 apsqgt0 8560 msqge0 8575 mulge0 8578 recexaplem2 8611 recexap 8612 rerecclap 8689 ltm1 8805 recgt0 8809 ltmul12a 8819 lemul12a 8821 mulgt1 8822 gt0div 8829 ge0div 8830 recgt1i 8857 recreclt 8859 sup3exmid 8916 crap0 8917 nnge1 8944 nngt0 8946 nnrecgt0 8959 0ne1 8988 0le0 9010 neg1lt0 9029 halfge0 9137 iap0 9144 nn0ssre 9182 nn0ge0 9203 nn0nlt0 9204 nn0le0eq0 9206 0mnnnnn0 9210 elnnnn0b 9222 elnnnn0c 9223 elnnz 9265 0z 9266 elnnz1 9278 nn0lt10b 9335 recnz 9348 gtndiv 9350 fnn0ind 9371 rpge0 9668 rpnegap 9688 0nrp 9691 0ltpnf 9784 mnflt0 9786 xneg0 9833 xaddid1 9864 xnn0xadd0 9869 xposdif 9884 elrege0 9978 0e0icopnf 9981 0elunit 9988 1elunit 9989 divelunit 10004 lincmb01cmp 10005 iccf1o 10006 unitssre 10007 fz0to4untppr 10126 modqelico 10336 modqmuladdim 10369 addmodid 10374 expubnd 10579 le2sq2 10598 bernneq2 10644 expnbnd 10646 expnlbnd 10647 faclbnd 10723 faclbnd3 10725 faclbnd6 10726 bcval4 10734 bcpasc 10748 reim0 10872 re0 10906 im0 10907 rei 10910 imi 10911 cj0 10912 caucvgre 10992 rennim 11013 sqrt0rlem 11014 sqrt0 11015 resqrexlemdecn 11023 resqrexlemnm 11029 resqrexlemgt0 11031 sqrt00 11051 sqrt9 11059 sqrt2gt1lt2 11060 leabs 11085 ltabs 11098 sqrtpclii 11141 max0addsup 11230 fimaxre2 11237 climge0 11335 iserge0 11353 fsum00 11472 arisum2 11509 0.999... 11531 fprodge0 11647 cos0 11740 ef01bndlem 11766 sin01bnd 11767 cos01bnd 11768 cos2bnd 11770 sin01gt0 11771 cos01gt0 11772 sincos2sgn 11775 sin4lt0 11776 absef 11779 absefib 11780 efieq1re 11781 epos 11790 flodddiv4 11941 gcdn0gt0 11981 nn0seqcvgd 12043 algcvgblem 12051 algcvga 12053 pythagtriplem12 12277 pythagtriplem13 12278 pythagtriplem14 12279 pythagtriplem16 12281 mulgnegnn 12998 ssblps 13964 ssbl 13965 xmeter 13975 cnbl0 14073 reeff1olem 14231 pilem3 14243 pipos 14248 sinhalfpilem 14251 sincosq1sgn 14286 sincosq2sgn 14287 sinq34lt0t 14291 coseq0q4123 14294 coseq00topi 14295 coseq0negpitopi 14296 tangtx 14298 sincos4thpi 14300 sincos6thpi 14302 cosordlem 14309 cosq34lt1 14310 cos02pilt1 14311 cos0pilt1 14312 cos11 14313 ioocosf1o 14314 log1 14326 logrpap0b 14336 logdivlti 14341 rpabscxpbnd 14398 lgsval2lem 14450 lgsval4a 14462 lgsneg 14464 lgsdilem 14467 lgsdir2lem1 14468 ex-gcd 14522 trilpolemclim 14823 trilpolemcl 14824 trilpolemisumle 14825 trilpolemeq1 14827 trilpolemlt1 14828 trirec0 14831 apdiff 14835 redc0 14844 reap0 14845 dceqnconst 14846 dcapnconst 14847 nconstwlpolemgt0 14850 neap0mkv 14855 |
Copyright terms: Public domain | W3C validator |