Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7898 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7862 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 7879 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 421 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2229 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 154 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2577 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∃wrex 2445 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-ral 2449 df-rex 2450 |
This theorem is referenced by: 0red 7900 0xr 7945 axmulgt0 7970 gtso 7977 0lt1 8025 ine0 8292 ltaddneg 8322 addgt0 8346 addgegt0 8347 addgtge0 8348 addge0 8349 ltaddpos 8350 ltneg 8360 leneg 8363 lt0neg1 8366 lt0neg2 8367 le0neg1 8368 le0neg2 8369 addge01 8370 suble0 8374 0le1 8379 gt0ne0i 8384 gt0ne0d 8410 lt0ne0d 8411 recexre 8476 recexgt0 8478 inelr 8482 rimul 8483 1ap0 8488 reapmul1 8493 apsqgt0 8499 msqge0 8514 mulge0 8517 recexaplem2 8549 recexap 8550 rerecclap 8626 ltm1 8741 recgt0 8745 ltmul12a 8755 lemul12a 8757 mulgt1 8758 gt0div 8765 ge0div 8766 recgt1i 8793 recreclt 8795 sup3exmid 8852 crap0 8853 nnge1 8880 nngt0 8882 nnrecgt0 8895 0ne1 8924 0le0 8946 neg1lt0 8965 halfge0 9073 iap0 9080 nn0ssre 9118 nn0ge0 9139 nn0nlt0 9140 nn0le0eq0 9142 0mnnnnn0 9146 elnnnn0b 9158 elnnnn0c 9159 elnnz 9201 0z 9202 elnnz1 9214 nn0lt10b 9271 recnz 9284 gtndiv 9286 fnn0ind 9307 rpge0 9602 rpnegap 9622 0nrp 9625 0ltpnf 9718 mnflt0 9720 xneg0 9767 xaddid1 9798 xnn0xadd0 9803 xposdif 9818 elrege0 9912 0e0icopnf 9915 0elunit 9922 1elunit 9923 divelunit 9938 lincmb01cmp 9939 iccf1o 9940 unitssre 9941 fz0to4untppr 10059 modqelico 10269 modqmuladdim 10302 addmodid 10307 expubnd 10512 le2sq2 10530 bernneq2 10576 expnbnd 10578 expnlbnd 10579 faclbnd 10654 faclbnd3 10656 faclbnd6 10657 bcval4 10665 bcpasc 10679 reim0 10803 re0 10837 im0 10838 rei 10841 imi 10842 cj0 10843 caucvgre 10923 rennim 10944 sqrt0rlem 10945 sqrt0 10946 resqrexlemdecn 10954 resqrexlemnm 10960 resqrexlemgt0 10962 sqrt00 10982 sqrt9 10990 sqrt2gt1lt2 10991 leabs 11016 ltabs 11029 sqrtpclii 11072 max0addsup 11161 fimaxre2 11168 climge0 11266 iserge0 11284 fsum00 11403 arisum2 11440 0.999... 11462 fprodge0 11578 cos0 11671 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos2bnd 11701 sin01gt0 11702 cos01gt0 11703 sincos2sgn 11706 sin4lt0 11707 absef 11710 absefib 11711 efieq1re 11712 epos 11721 flodddiv4 11871 gcdn0gt0 11911 nn0seqcvgd 11973 algcvgblem 11981 algcvga 11983 pythagtriplem12 12207 pythagtriplem13 12208 pythagtriplem14 12209 pythagtriplem16 12211 ssblps 13065 ssbl 13066 xmeter 13076 cnbl0 13174 reeff1olem 13332 pilem3 13344 pipos 13349 sinhalfpilem 13352 sincosq1sgn 13387 sincosq2sgn 13388 sinq34lt0t 13392 coseq0q4123 13395 coseq00topi 13396 coseq0negpitopi 13397 tangtx 13399 sincos4thpi 13401 sincos6thpi 13403 cosordlem 13410 cosq34lt1 13411 cos02pilt1 13412 cos0pilt1 13413 cos11 13414 ioocosf1o 13415 log1 13427 logrpap0b 13437 logdivlti 13442 rpabscxpbnd 13499 lgsval2lem 13551 lgsval4a 13563 lgsneg 13565 lgsdilem 13568 lgsdir2lem1 13569 ex-gcd 13612 trilpolemclim 13915 trilpolemcl 13916 trilpolemisumle 13917 trilpolemeq1 13919 trilpolemlt1 13920 trirec0 13923 apdiff 13927 redc0 13936 reap0 13937 dceqnconst 13938 dcapnconst 13939 nconstwlpolemgt0 13942 |
Copyright terms: Public domain | W3C validator |