| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8027 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 7990 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8007 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2259 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2608 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 (class class class)co 5923 ℝcr 7880 0cc0 7881 1c1 7882 + caddc 7884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7975 ax-addrcl 7978 ax-rnegex 7990 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: 0red 8029 0xr 8075 axmulgt0 8100 gtso 8107 0lt1 8155 ine0 8422 ltaddneg 8453 addgt0 8477 addgegt0 8478 addgtge0 8479 addge0 8480 ltaddpos 8481 ltneg 8491 leneg 8494 lt0neg1 8497 lt0neg2 8498 le0neg1 8499 le0neg2 8500 addge01 8501 suble0 8505 0le1 8510 gt0ne0i 8515 gt0ne0d 8541 lt0ne0d 8542 recexre 8607 recexgt0 8609 inelr 8613 rimul 8614 1ap0 8619 reapmul1 8624 apsqgt0 8630 msqge0 8645 mulge0 8648 recexaplem2 8681 recexap 8682 rerecclap 8759 ltm1 8875 recgt0 8879 ltmul12a 8889 lemul12a 8891 mulgt1 8892 gt0div 8899 ge0div 8900 recgt1i 8927 recreclt 8929 sup3exmid 8986 crap0 8987 nnge1 9015 nngt0 9017 nnrecgt0 9030 0ne1 9059 0le0 9081 neg1lt0 9100 halfge0 9209 iap0 9216 nn0ssre 9255 nn0ge0 9276 nn0nlt0 9277 nn0le0eq0 9279 0mnnnnn0 9283 elnnnn0b 9295 elnnnn0c 9296 elnnz 9338 0z 9339 elnnz1 9351 nn0lt10b 9408 recnz 9421 gtndiv 9423 fnn0ind 9444 rpge0 9743 rpnegap 9763 0nrp 9766 0ltpnf 9859 mnflt0 9861 xneg0 9908 xaddid1 9939 xnn0xadd0 9944 xposdif 9959 elrege0 10053 0e0icopnf 10056 0elunit 10063 1elunit 10064 divelunit 10079 lincmb01cmp 10080 iccf1o 10081 unitssre 10082 fz0to4untppr 10201 modqelico 10428 modqmuladdim 10461 addmodid 10466 xnn0nnen 10531 expubnd 10690 le2sq2 10709 bernneq2 10755 expnbnd 10757 expnlbnd 10758 faclbnd 10835 faclbnd3 10837 faclbnd6 10838 bcval4 10846 bcpasc 10860 reim0 11028 re0 11062 im0 11063 rei 11066 imi 11067 cj0 11068 caucvgre 11148 rennim 11169 sqrt0rlem 11170 sqrt0 11171 resqrexlemdecn 11179 resqrexlemnm 11185 resqrexlemgt0 11187 sqrt00 11207 sqrt9 11215 sqrt2gt1lt2 11216 leabs 11241 ltabs 11254 sqrtpclii 11297 max0addsup 11386 fimaxre2 11394 climge0 11492 iserge0 11510 fsum00 11629 arisum2 11666 0.999... 11688 fprodge0 11804 cos0 11897 ef01bndlem 11923 sin01bnd 11924 cos01bnd 11925 cos2bnd 11927 sin01gt0 11929 cos01gt0 11930 sincos2sgn 11933 sin4lt0 11934 absef 11937 absefib 11938 efieq1re 11939 epos 11948 flodddiv4 12103 gcdn0gt0 12155 nn0seqcvgd 12219 algcvgblem 12227 algcvga 12229 pythagtriplem12 12454 pythagtriplem13 12455 pythagtriplem14 12456 pythagtriplem16 12458 mulgnegnn 13272 ssblps 14671 ssbl 14672 xmeter 14682 cnbl0 14780 hovera 14893 hovergt0 14896 plyrecj 15009 reeff1olem 15017 pilem3 15029 pipos 15034 sinhalfpilem 15037 sincosq1sgn 15072 sincosq2sgn 15073 sinq34lt0t 15077 coseq0q4123 15080 coseq00topi 15081 coseq0negpitopi 15082 tangtx 15084 sincos4thpi 15086 sincos6thpi 15088 cosordlem 15095 cosq34lt1 15096 cos02pilt1 15097 cos0pilt1 15098 cos11 15099 ioocosf1o 15100 log1 15112 logrpap0b 15122 logdivlti 15127 rpabscxpbnd 15186 lgsval2lem 15261 lgsval4a 15273 lgsneg 15275 lgsdilem 15278 lgsdir2lem1 15279 ex-gcd 15387 trilpolemclim 15690 trilpolemcl 15691 trilpolemisumle 15692 trilpolemeq1 15694 trilpolemlt1 15695 trirec0 15698 apdiff 15702 redc0 15711 reap0 15712 dceqnconst 15714 dcapnconst 15715 nconstwlpolemgt0 15718 neap0mkv 15723 |
| Copyright terms: Public domain | W3C validator |