| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8104 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8121 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2292 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2642 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∃wrex 2509 (class class class)co 6000 ℝcr 7994 0cc0 7995 1c1 7996 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: 0red 8143 0xr 8189 axmulgt0 8214 gtso 8221 0lt1 8269 ine0 8536 ltaddneg 8567 addgt0 8591 addgegt0 8592 addgtge0 8593 addge0 8594 ltaddpos 8595 ltneg 8605 leneg 8608 lt0neg1 8611 lt0neg2 8612 le0neg1 8613 le0neg2 8614 addge01 8615 suble0 8619 0le1 8624 gt0ne0i 8629 gt0ne0d 8655 lt0ne0d 8656 recexre 8721 recexgt0 8723 inelr 8727 rimul 8728 1ap0 8733 reapmul1 8738 apsqgt0 8744 msqge0 8759 mulge0 8762 recexaplem2 8795 recexap 8796 rerecclap 8873 ltm1 8989 recgt0 8993 ltmul12a 9003 lemul12a 9005 mulgt1 9006 gt0div 9013 ge0div 9014 recgt1i 9041 recreclt 9043 sup3exmid 9100 crap0 9101 nnge1 9129 nngt0 9131 nnrecgt0 9144 0ne1 9173 0le0 9195 neg1lt0 9214 halfge0 9323 iap0 9330 nn0ssre 9369 nn0ge0 9390 nn0nlt0 9391 nn0le0eq0 9393 0mnnnnn0 9397 elnnnn0b 9409 elnnnn0c 9410 elnnz 9452 0z 9453 elnnz1 9465 nn0lt10b 9523 recnz 9536 gtndiv 9538 fnn0ind 9559 rpge0 9858 rpnegap 9878 0nrp 9881 0ltpnf 9974 mnflt0 9976 xneg0 10023 xaddid1 10054 xnn0xadd0 10059 xposdif 10074 elrege0 10168 0e0icopnf 10171 0elunit 10178 1elunit 10179 divelunit 10194 lincmb01cmp 10195 iccf1o 10196 unitssre 10197 fz0to4untppr 10316 modqelico 10551 modqmuladdim 10584 addmodid 10589 xnn0nnen 10654 expubnd 10813 le2sq2 10832 bernneq2 10878 expnbnd 10880 expnlbnd 10881 faclbnd 10958 faclbnd3 10960 faclbnd6 10961 bcval4 10969 bcpasc 10983 lsw0 11114 swrdccatin2 11256 pfxccatin12lem3 11259 reim0 11367 re0 11401 im0 11402 rei 11405 imi 11406 cj0 11407 caucvgre 11487 rennim 11508 sqrt0rlem 11509 sqrt0 11510 resqrexlemdecn 11518 resqrexlemnm 11524 resqrexlemgt0 11526 sqrt00 11546 sqrt9 11554 sqrt2gt1lt2 11555 leabs 11580 ltabs 11593 sqrtpclii 11636 max0addsup 11725 fimaxre2 11733 climge0 11831 iserge0 11849 fsum00 11968 arisum2 12005 0.999... 12027 fprodge0 12143 cos0 12236 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos2bnd 12266 sin01gt0 12268 cos01gt0 12269 sincos2sgn 12272 sin4lt0 12273 absef 12276 absefib 12277 efieq1re 12278 epos 12287 flodddiv4 12442 gcdn0gt0 12494 nn0seqcvgd 12558 algcvgblem 12566 algcvga 12568 pythagtriplem12 12793 pythagtriplem13 12794 pythagtriplem14 12795 pythagtriplem16 12797 mulgnegnn 13664 ssblps 15093 ssbl 15094 xmeter 15104 cnbl0 15202 hovera 15315 hovergt0 15318 plyrecj 15431 reeff1olem 15439 pilem3 15451 pipos 15456 sinhalfpilem 15459 sincosq1sgn 15494 sincosq2sgn 15495 sinq34lt0t 15499 coseq0q4123 15502 coseq00topi 15503 coseq0negpitopi 15504 tangtx 15506 sincos4thpi 15508 sincos6thpi 15510 cosordlem 15517 cosq34lt1 15518 cos02pilt1 15519 cos0pilt1 15520 cos11 15521 ioocosf1o 15522 log1 15534 logrpap0b 15544 logdivlti 15549 rpabscxpbnd 15608 lgsval2lem 15683 lgsval4a 15695 lgsneg 15697 lgsdilem 15700 lgsdir2lem1 15701 ex-gcd 16053 trilpolemclim 16363 trilpolemcl 16364 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 trirec0 16371 apdiff 16375 redc0 16384 reap0 16385 dceqnconst 16387 dcapnconst 16388 nconstwlpolemgt0 16391 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |