Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0re | GIF version |
Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
0re | ⊢ 0 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7919 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-rnegex 7883 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
3 | readdcl 7900 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
4 | 1, 3 | mpan 422 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
5 | eleq1 2233 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
6 | 4, 5 | syl5ibcom 154 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
7 | 6 | rexlimiv 2581 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∃wrex 2449 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-ral 2453 df-rex 2454 |
This theorem is referenced by: 0red 7921 0xr 7966 axmulgt0 7991 gtso 7998 0lt1 8046 ine0 8313 ltaddneg 8343 addgt0 8367 addgegt0 8368 addgtge0 8369 addge0 8370 ltaddpos 8371 ltneg 8381 leneg 8384 lt0neg1 8387 lt0neg2 8388 le0neg1 8389 le0neg2 8390 addge01 8391 suble0 8395 0le1 8400 gt0ne0i 8405 gt0ne0d 8431 lt0ne0d 8432 recexre 8497 recexgt0 8499 inelr 8503 rimul 8504 1ap0 8509 reapmul1 8514 apsqgt0 8520 msqge0 8535 mulge0 8538 recexaplem2 8570 recexap 8571 rerecclap 8647 ltm1 8762 recgt0 8766 ltmul12a 8776 lemul12a 8778 mulgt1 8779 gt0div 8786 ge0div 8787 recgt1i 8814 recreclt 8816 sup3exmid 8873 crap0 8874 nnge1 8901 nngt0 8903 nnrecgt0 8916 0ne1 8945 0le0 8967 neg1lt0 8986 halfge0 9094 iap0 9101 nn0ssre 9139 nn0ge0 9160 nn0nlt0 9161 nn0le0eq0 9163 0mnnnnn0 9167 elnnnn0b 9179 elnnnn0c 9180 elnnz 9222 0z 9223 elnnz1 9235 nn0lt10b 9292 recnz 9305 gtndiv 9307 fnn0ind 9328 rpge0 9623 rpnegap 9643 0nrp 9646 0ltpnf 9739 mnflt0 9741 xneg0 9788 xaddid1 9819 xnn0xadd0 9824 xposdif 9839 elrege0 9933 0e0icopnf 9936 0elunit 9943 1elunit 9944 divelunit 9959 lincmb01cmp 9960 iccf1o 9961 unitssre 9962 fz0to4untppr 10080 modqelico 10290 modqmuladdim 10323 addmodid 10328 expubnd 10533 le2sq2 10551 bernneq2 10597 expnbnd 10599 expnlbnd 10600 faclbnd 10675 faclbnd3 10677 faclbnd6 10678 bcval4 10686 bcpasc 10700 reim0 10825 re0 10859 im0 10860 rei 10863 imi 10864 cj0 10865 caucvgre 10945 rennim 10966 sqrt0rlem 10967 sqrt0 10968 resqrexlemdecn 10976 resqrexlemnm 10982 resqrexlemgt0 10984 sqrt00 11004 sqrt9 11012 sqrt2gt1lt2 11013 leabs 11038 ltabs 11051 sqrtpclii 11094 max0addsup 11183 fimaxre2 11190 climge0 11288 iserge0 11306 fsum00 11425 arisum2 11462 0.999... 11484 fprodge0 11600 cos0 11693 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos2bnd 11723 sin01gt0 11724 cos01gt0 11725 sincos2sgn 11728 sin4lt0 11729 absef 11732 absefib 11733 efieq1re 11734 epos 11743 flodddiv4 11893 gcdn0gt0 11933 nn0seqcvgd 11995 algcvgblem 12003 algcvga 12005 pythagtriplem12 12229 pythagtriplem13 12230 pythagtriplem14 12231 pythagtriplem16 12233 ssblps 13219 ssbl 13220 xmeter 13230 cnbl0 13328 reeff1olem 13486 pilem3 13498 pipos 13503 sinhalfpilem 13506 sincosq1sgn 13541 sincosq2sgn 13542 sinq34lt0t 13546 coseq0q4123 13549 coseq00topi 13550 coseq0negpitopi 13551 tangtx 13553 sincos4thpi 13555 sincos6thpi 13557 cosordlem 13564 cosq34lt1 13565 cos02pilt1 13566 cos0pilt1 13567 cos11 13568 ioocosf1o 13569 log1 13581 logrpap0b 13591 logdivlti 13596 rpabscxpbnd 13653 lgsval2lem 13705 lgsval4a 13717 lgsneg 13719 lgsdilem 13722 lgsdir2lem1 13723 ex-gcd 13766 trilpolemclim 14068 trilpolemcl 14069 trilpolemisumle 14070 trilpolemeq1 14072 trilpolemlt1 14073 trirec0 14076 apdiff 14080 redc0 14089 reap0 14090 dceqnconst 14091 dcapnconst 14092 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |