| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8091 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8054 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8071 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2269 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2618 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∃wrex 2486 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 + caddc 7948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2199 df-clel 2202 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: 0red 8093 0xr 8139 axmulgt0 8164 gtso 8171 0lt1 8219 ine0 8486 ltaddneg 8517 addgt0 8541 addgegt0 8542 addgtge0 8543 addge0 8544 ltaddpos 8545 ltneg 8555 leneg 8558 lt0neg1 8561 lt0neg2 8562 le0neg1 8563 le0neg2 8564 addge01 8565 suble0 8569 0le1 8574 gt0ne0i 8579 gt0ne0d 8605 lt0ne0d 8606 recexre 8671 recexgt0 8673 inelr 8677 rimul 8678 1ap0 8683 reapmul1 8688 apsqgt0 8694 msqge0 8709 mulge0 8712 recexaplem2 8745 recexap 8746 rerecclap 8823 ltm1 8939 recgt0 8943 ltmul12a 8953 lemul12a 8955 mulgt1 8956 gt0div 8963 ge0div 8964 recgt1i 8991 recreclt 8993 sup3exmid 9050 crap0 9051 nnge1 9079 nngt0 9081 nnrecgt0 9094 0ne1 9123 0le0 9145 neg1lt0 9164 halfge0 9273 iap0 9280 nn0ssre 9319 nn0ge0 9340 nn0nlt0 9341 nn0le0eq0 9343 0mnnnnn0 9347 elnnnn0b 9359 elnnnn0c 9360 elnnz 9402 0z 9403 elnnz1 9415 nn0lt10b 9473 recnz 9486 gtndiv 9488 fnn0ind 9509 rpge0 9808 rpnegap 9828 0nrp 9831 0ltpnf 9924 mnflt0 9926 xneg0 9973 xaddid1 10004 xnn0xadd0 10009 xposdif 10024 elrege0 10118 0e0icopnf 10121 0elunit 10128 1elunit 10129 divelunit 10144 lincmb01cmp 10145 iccf1o 10146 unitssre 10147 fz0to4untppr 10266 modqelico 10501 modqmuladdim 10534 addmodid 10539 xnn0nnen 10604 expubnd 10763 le2sq2 10782 bernneq2 10828 expnbnd 10830 expnlbnd 10831 faclbnd 10908 faclbnd3 10910 faclbnd6 10911 bcval4 10919 bcpasc 10933 lsw0 11063 reim0 11247 re0 11281 im0 11282 rei 11285 imi 11286 cj0 11287 caucvgre 11367 rennim 11388 sqrt0rlem 11389 sqrt0 11390 resqrexlemdecn 11398 resqrexlemnm 11404 resqrexlemgt0 11406 sqrt00 11426 sqrt9 11434 sqrt2gt1lt2 11435 leabs 11460 ltabs 11473 sqrtpclii 11516 max0addsup 11605 fimaxre2 11613 climge0 11711 iserge0 11729 fsum00 11848 arisum2 11885 0.999... 11907 fprodge0 12023 cos0 12116 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 cos2bnd 12146 sin01gt0 12148 cos01gt0 12149 sincos2sgn 12152 sin4lt0 12153 absef 12156 absefib 12157 efieq1re 12158 epos 12167 flodddiv4 12322 gcdn0gt0 12374 nn0seqcvgd 12438 algcvgblem 12446 algcvga 12448 pythagtriplem12 12673 pythagtriplem13 12674 pythagtriplem14 12675 pythagtriplem16 12677 mulgnegnn 13543 ssblps 14972 ssbl 14973 xmeter 14983 cnbl0 15081 hovera 15194 hovergt0 15197 plyrecj 15310 reeff1olem 15318 pilem3 15330 pipos 15335 sinhalfpilem 15338 sincosq1sgn 15373 sincosq2sgn 15374 sinq34lt0t 15378 coseq0q4123 15381 coseq00topi 15382 coseq0negpitopi 15383 tangtx 15385 sincos4thpi 15387 sincos6thpi 15389 cosordlem 15396 cosq34lt1 15397 cos02pilt1 15398 cos0pilt1 15399 cos11 15400 ioocosf1o 15401 log1 15413 logrpap0b 15423 logdivlti 15428 rpabscxpbnd 15487 lgsval2lem 15562 lgsval4a 15574 lgsneg 15576 lgsdilem 15579 lgsdir2lem1 15580 ex-gcd 15806 trilpolemclim 16116 trilpolemcl 16117 trilpolemisumle 16118 trilpolemeq1 16120 trilpolemlt1 16121 trirec0 16124 apdiff 16128 redc0 16137 reap0 16138 dceqnconst 16140 dcapnconst 16141 nconstwlpolemgt0 16144 neap0mkv 16149 |
| Copyright terms: Public domain | W3C validator |