| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0re | GIF version | ||
| Description: 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 0re | ⊢ 0 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8044 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-rnegex 8007 | . 2 ⊢ (1 ∈ ℝ → ∃𝑥 ∈ ℝ (1 + 𝑥) = 0) | |
| 3 | readdcl 8024 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (1 + 𝑥) ∈ ℝ) | |
| 4 | 1, 3 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (1 + 𝑥) ∈ ℝ) |
| 5 | eleq1 2259 | . . . 4 ⊢ ((1 + 𝑥) = 0 → ((1 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 6 | 4, 5 | syl5ibcom 155 | . . 3 ⊢ (𝑥 ∈ ℝ → ((1 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 7 | 6 | rexlimiv 2608 | . 2 ⊢ (∃𝑥 ∈ ℝ (1 + 𝑥) = 0 → 0 ∈ ℝ) |
| 8 | 1, 2, 7 | mp2b 8 | 1 ⊢ 0 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 (class class class)co 5925 ℝcr 7897 0cc0 7898 1c1 7899 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: 0red 8046 0xr 8092 axmulgt0 8117 gtso 8124 0lt1 8172 ine0 8439 ltaddneg 8470 addgt0 8494 addgegt0 8495 addgtge0 8496 addge0 8497 ltaddpos 8498 ltneg 8508 leneg 8511 lt0neg1 8514 lt0neg2 8515 le0neg1 8516 le0neg2 8517 addge01 8518 suble0 8522 0le1 8527 gt0ne0i 8532 gt0ne0d 8558 lt0ne0d 8559 recexre 8624 recexgt0 8626 inelr 8630 rimul 8631 1ap0 8636 reapmul1 8641 apsqgt0 8647 msqge0 8662 mulge0 8665 recexaplem2 8698 recexap 8699 rerecclap 8776 ltm1 8892 recgt0 8896 ltmul12a 8906 lemul12a 8908 mulgt1 8909 gt0div 8916 ge0div 8917 recgt1i 8944 recreclt 8946 sup3exmid 9003 crap0 9004 nnge1 9032 nngt0 9034 nnrecgt0 9047 0ne1 9076 0le0 9098 neg1lt0 9117 halfge0 9226 iap0 9233 nn0ssre 9272 nn0ge0 9293 nn0nlt0 9294 nn0le0eq0 9296 0mnnnnn0 9300 elnnnn0b 9312 elnnnn0c 9313 elnnz 9355 0z 9356 elnnz1 9368 nn0lt10b 9425 recnz 9438 gtndiv 9440 fnn0ind 9461 rpge0 9760 rpnegap 9780 0nrp 9783 0ltpnf 9876 mnflt0 9878 xneg0 9925 xaddid1 9956 xnn0xadd0 9961 xposdif 9976 elrege0 10070 0e0icopnf 10073 0elunit 10080 1elunit 10081 divelunit 10096 lincmb01cmp 10097 iccf1o 10098 unitssre 10099 fz0to4untppr 10218 modqelico 10445 modqmuladdim 10478 addmodid 10483 xnn0nnen 10548 expubnd 10707 le2sq2 10726 bernneq2 10772 expnbnd 10774 expnlbnd 10775 faclbnd 10852 faclbnd3 10854 faclbnd6 10855 bcval4 10863 bcpasc 10877 reim0 11045 re0 11079 im0 11080 rei 11083 imi 11084 cj0 11085 caucvgre 11165 rennim 11186 sqrt0rlem 11187 sqrt0 11188 resqrexlemdecn 11196 resqrexlemnm 11202 resqrexlemgt0 11204 sqrt00 11224 sqrt9 11232 sqrt2gt1lt2 11233 leabs 11258 ltabs 11271 sqrtpclii 11314 max0addsup 11403 fimaxre2 11411 climge0 11509 iserge0 11527 fsum00 11646 arisum2 11683 0.999... 11705 fprodge0 11821 cos0 11914 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos2bnd 11944 sin01gt0 11946 cos01gt0 11947 sincos2sgn 11950 sin4lt0 11951 absef 11954 absefib 11955 efieq1re 11956 epos 11965 flodddiv4 12120 gcdn0gt0 12172 nn0seqcvgd 12236 algcvgblem 12244 algcvga 12246 pythagtriplem12 12471 pythagtriplem13 12472 pythagtriplem14 12473 pythagtriplem16 12475 mulgnegnn 13340 ssblps 14769 ssbl 14770 xmeter 14780 cnbl0 14878 hovera 14991 hovergt0 14994 plyrecj 15107 reeff1olem 15115 pilem3 15127 pipos 15132 sinhalfpilem 15135 sincosq1sgn 15170 sincosq2sgn 15171 sinq34lt0t 15175 coseq0q4123 15178 coseq00topi 15179 coseq0negpitopi 15180 tangtx 15182 sincos4thpi 15184 sincos6thpi 15186 cosordlem 15193 cosq34lt1 15194 cos02pilt1 15195 cos0pilt1 15196 cos11 15197 ioocosf1o 15198 log1 15210 logrpap0b 15220 logdivlti 15225 rpabscxpbnd 15284 lgsval2lem 15359 lgsval4a 15371 lgsneg 15373 lgsdilem 15376 lgsdir2lem1 15377 ex-gcd 15485 trilpolemclim 15793 trilpolemcl 15794 trilpolemisumle 15795 trilpolemeq1 15797 trilpolemlt1 15798 trirec0 15801 apdiff 15805 redc0 15814 reap0 15815 dceqnconst 15817 dcapnconst 15818 nconstwlpolemgt0 15821 neap0mkv 15826 |
| Copyright terms: Public domain | W3C validator |