ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan GIF version

Theorem readdcan 8183
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem readdcan
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8005 . . . 4 (𝐶 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
213ad2ant3 1022 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
3 oveq2 5933 . . . . . . 7 ((𝐶 + 𝐴) = (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
43adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
5 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℝ)
65recnd 8072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
7 simpl3 1004 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℝ)
87recnd 8072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
9 simpl1 1002 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℝ)
109recnd 8072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
116, 8, 10addassd 8066 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (𝑥 + (𝐶 + 𝐴)))
12 simpl2 1003 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℝ)
1312recnd 8072 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
146, 8, 13addassd 8066 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (𝑥 + (𝐶 + 𝐵)))
1511, 14eqeq12d 2211 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
1615adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
174, 16mpbird 167 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵))
188adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐶 ∈ ℂ)
196adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝑥 ∈ ℂ)
20 addcom 8180 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
2118, 19, 20syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
22 simplrr 536 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = 0)
2321, 22eqtr3d 2231 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + 𝐶) = 0)
2423oveq1d 5940 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = (0 + 𝐴))
2510adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 ∈ ℂ)
26 addlid 8182 . . . . . . 7 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
2725, 26syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐴) = 𝐴)
2824, 27eqtrd 2229 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = 𝐴)
2923oveq1d 5940 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = (0 + 𝐵))
3013adantr 276 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐵 ∈ ℂ)
31 addlid 8182 . . . . . . 7 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
3230, 31syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐵) = 𝐵)
3329, 32eqtrd 2229 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = 𝐵)
3417, 28, 333eqtr3d 2237 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 = 𝐵)
3534ex 115 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
362, 35rexlimddv 2619 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
37 oveq2 5933 . 2 (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵))
3836, 37impbid1 142 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wrex 2476  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator