Step | Hyp | Ref
| Expression |
1 | | ax-rnegex 7883 |
. . . 4
⊢ (𝐶 ∈ ℝ →
∃𝑥 ∈ ℝ
(𝐶 + 𝑥) = 0) |
2 | 1 | 3ad2ant3 1015 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) →
∃𝑥 ∈ ℝ
(𝐶 + 𝑥) = 0) |
3 | | oveq2 5861 |
. . . . . . 7
⊢ ((𝐶 + 𝐴) = (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))) |
4 | 3 | adantl 275 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))) |
5 | | simprl 526 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℝ) |
6 | 5 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ) |
7 | | simpl3 997 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℝ) |
8 | 7 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ) |
9 | | simpl1 995 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℝ) |
10 | 9 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ) |
11 | 6, 8, 10 | addassd 7942 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (𝑥 + (𝐶 + 𝐴))) |
12 | | simpl2 996 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℝ) |
13 | 12 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ) |
14 | 6, 8, 13 | addassd 7942 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (𝑥 + (𝐶 + 𝐵))) |
15 | 11, 14 | eqeq12d 2185 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))) |
16 | 15 | adantr 274 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))) |
17 | 4, 16 | mpbird 166 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵)) |
18 | 8 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐶 ∈ ℂ) |
19 | 6 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝑥 ∈ ℂ) |
20 | | addcom 8056 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 + 𝑥) = (𝑥 + 𝐶)) |
21 | 18, 19, 20 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = (𝑥 + 𝐶)) |
22 | | simplrr 531 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = 0) |
23 | 21, 22 | eqtr3d 2205 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + 𝐶) = 0) |
24 | 23 | oveq1d 5868 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = (0 + 𝐴)) |
25 | 10 | adantr 274 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 ∈ ℂ) |
26 | | addid2 8058 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (0 +
𝐴) = 𝐴) |
27 | 25, 26 | syl 14 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐴) = 𝐴) |
28 | 24, 27 | eqtrd 2203 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = 𝐴) |
29 | 23 | oveq1d 5868 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = (0 + 𝐵)) |
30 | 13 | adantr 274 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐵 ∈ ℂ) |
31 | | addid2 8058 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ → (0 +
𝐵) = 𝐵) |
32 | 30, 31 | syl 14 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐵) = 𝐵) |
33 | 29, 32 | eqtrd 2203 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = 𝐵) |
34 | 17, 28, 33 | 3eqtr3d 2211 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 = 𝐵) |
35 | 34 | ex 114 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵)) |
36 | 2, 35 | rexlimddv 2592 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵)) |
37 | | oveq2 5861 |
. 2
⊢ (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵)) |
38 | 36, 37 | impbid1 141 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) |