| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax11e | GIF version | ||
| Description: Analogue to ax-11 1530 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.) |
| Ref | Expression |
|---|---|
| ax11e | ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs5e 1819 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
| 2 | 1 | 19.21bi 1582 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → ∃𝑦𝜑)) |
| 3 | 2 | com12 30 | 1 ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-11 1530 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax10oe 1821 drex1 1822 sbcof2 1834 ax11ev 1852 |
| Copyright terms: Public domain | W3C validator |