| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax11e | GIF version | ||
| Description: Analogue to ax-11 1520 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| ax11e | ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equs5e 1809 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
| 2 | 1 | 19.21bi 1572 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → ∃𝑦𝜑)) | 
| 3 | 2 | com12 30 | 1 ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-11 1520 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ax10oe 1811 drex1 1812 sbcof2 1824 ax11ev 1842 | 
| Copyright terms: Public domain | W3C validator |