ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11e GIF version

Theorem ax11e 1820
Description: Analogue to ax-11 1530 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
Assertion
Ref Expression
ax11e (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))

Proof of Theorem ax11e
StepHypRef Expression
1 equs5e 1819 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
2119.21bi 1582 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 → ∃𝑦𝜑))
32com12 30 1 (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-11 1530  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax10oe  1821  drex1  1822  sbcof2  1834  ax11ev  1852
  Copyright terms: Public domain W3C validator