Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equs5e | GIF version |
Description: A property related to substitution that unlike equs5 1817 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
equs5e | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1578 | . . . . 5 ⊢ (𝜑 → ∃𝑦𝜑) | |
2 | hbe1 1483 | . . . . 5 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑦∃𝑦𝜑) |
4 | 3 | anim2i 340 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑)) |
5 | 4 | eximi 1588 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑)) |
6 | equs5a 1782 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦∃𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
7 | 5, 6 | syl 14 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-11 1494 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11e 1784 sb4e 1793 |
Copyright terms: Public domain | W3C validator |