| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax10oe | GIF version | ||
| Description: Quantifier Substitution for existential quantifiers. Analogue to ax10o 1729 but for ∃ rather than ∀. (Contributed by Jim Kingdon, 21-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| ax10oe | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-ia3 108 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → (𝑥 = 𝑦 ∧ 𝜓))) | |
| 2 | 1 | alimi 1469 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝜓 → (𝑥 = 𝑦 ∧ 𝜓))) | 
| 3 | exim 1613 | . . 3 ⊢ (∀𝑥(𝜓 → (𝑥 = 𝑦 ∧ 𝜓)) → (∃𝑥𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 5 | ax11e 1810 | . . 3 ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) | |
| 6 | 5 | sps 1551 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑦𝜓)) | 
| 7 | 4, 6 | syld 45 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-11 1520 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |