ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21bi GIF version

Theorem 19.21bi 1604
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 ax-4 1556 . 2 (∀𝑥𝜓𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1556
This theorem is referenced by:  19.21bbi  1605  ax11e  1842  eqeq1  2236  eleq2  2293  r19.21bi  2618  elrab3t  2958  ssel  3218  exmidsssn  4285  copsex2t  4330  pocl  4393  ordsucim  4591  peano2  4686  funmo  5332  funun  5361  fununi  5388  imain  5402  tfrlem3-2d  6456  tfr1onlemaccex  6492  tfri1dALT  6495  tfrcllemaccex  6505  findcard  7046  findcard2  7047  findcard2s  7048  exmidpw  7066  exmidpweq  7067  nninfctlemfo  12556
  Copyright terms: Public domain W3C validator