Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.21bi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | ax-4 1503 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1503 |
This theorem is referenced by: 19.21bbi 1552 ax11e 1789 eqeq1 2177 eleq2 2234 r19.21bi 2558 elrab3t 2885 ssel 3141 exmidsssn 4188 copsex2t 4230 pocl 4288 ordsucim 4484 peano2 4579 funmo 5213 funun 5242 fununi 5266 imain 5280 tfrlem3-2d 6291 tfr1onlemaccex 6327 tfri1dALT 6330 tfrcllemaccex 6340 findcard 6866 findcard2 6867 findcard2s 6868 exmidpw 6886 exmidpweq 6887 |
Copyright terms: Public domain | W3C validator |