Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.21bi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.21bi.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
19.21bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21bi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | ax-4 1508 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1508 |
This theorem is referenced by: 19.21bbi 1557 ax11e 1794 eqeq1 2182 eleq2 2239 r19.21bi 2563 elrab3t 2890 ssel 3147 exmidsssn 4197 copsex2t 4239 pocl 4297 ordsucim 4493 peano2 4588 funmo 5223 funun 5252 fununi 5276 imain 5290 tfrlem3-2d 6303 tfr1onlemaccex 6339 tfri1dALT 6342 tfrcllemaccex 6352 findcard 6878 findcard2 6879 findcard2s 6880 exmidpw 6898 exmidpweq 6899 |
Copyright terms: Public domain | W3C validator |