ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21bi GIF version

Theorem 19.21bi 1572
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 ax-4 1524 . 2 (∀𝑥𝜓𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1524
This theorem is referenced by:  19.21bbi  1573  ax11e  1810  eqeq1  2203  eleq2  2260  r19.21bi  2585  elrab3t  2919  ssel  3177  exmidsssn  4235  copsex2t  4278  pocl  4338  ordsucim  4536  peano2  4631  funmo  5273  funun  5302  fununi  5326  imain  5340  tfrlem3-2d  6370  tfr1onlemaccex  6406  tfri1dALT  6409  tfrcllemaccex  6419  findcard  6949  findcard2  6950  findcard2s  6951  exmidpw  6969  exmidpweq  6970  nninfctlemfo  12207
  Copyright terms: Public domain W3C validator