ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21bi GIF version

Theorem 19.21bi 1556
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 ax-4 1508 . 2 (∀𝑥𝜓𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1508
This theorem is referenced by:  19.21bbi  1557  ax11e  1794  eqeq1  2182  eleq2  2239  r19.21bi  2563  elrab3t  2890  ssel  3147  exmidsssn  4197  copsex2t  4239  pocl  4297  ordsucim  4493  peano2  4588  funmo  5223  funun  5252  fununi  5276  imain  5290  tfrlem3-2d  6303  tfr1onlemaccex  6339  tfri1dALT  6342  tfrcllemaccex  6352  findcard  6878  findcard2  6879  findcard2s  6880  exmidpw  6898  exmidpweq  6899
  Copyright terms: Public domain W3C validator