ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21bi GIF version

Theorem 19.21bi 1551
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.21bi.1 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
19.21bi (𝜑𝜓)

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2 (𝜑 → ∀𝑥𝜓)
2 ax-4 1503 . 2 (∀𝑥𝜓𝜓)
31, 2syl 14 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1503
This theorem is referenced by:  19.21bbi  1552  ax11e  1789  eqeq1  2177  eleq2  2234  r19.21bi  2558  elrab3t  2885  ssel  3141  exmidsssn  4188  copsex2t  4230  pocl  4288  ordsucim  4484  peano2  4579  funmo  5213  funun  5242  fununi  5266  imain  5280  tfrlem3-2d  6291  tfr1onlemaccex  6327  tfri1dALT  6330  tfrcllemaccex  6340  findcard  6866  findcard2  6867  findcard2s  6868  exmidpw  6886  exmidpweq  6887
  Copyright terms: Public domain W3C validator